Linux Security in 10 Years

Security Strategy

Raise TCO

- Total cost of 'own'ership (Dave Aitel)
- Aim for skilled attackers
 - APT these days

Create unpredictable & hostile environment

- ASLR
- Infoleak removal
- $_{\odot}$ No RWX in memory or on disk

Access Control != Security

Soften, Access Control only plays a role postexploitation

- A "last line" of defense
- Post-exploitation, an attacker wants permanence

 Develop more complex exploit that plays along with published SELinux policies?
Attack that new perf_counter system call completely unmonitored by SELinux?

Access Control Won't Save You

Mout loader ^{so}Vmsplice ^{so}Tee/splice ⁸⁰Brk ^{so}Perf counter ∞ Mremap ∞Move_pages ^{so}Pipe ELF loader ε Ftc...

Kernel in the TCB

- Dots of attention paid to hardening userland
- no mainline attention to the kernel
- ∞ What will attackers target?
- nlightenment
 - Disables SELinux, TOMOYO, IMA, AppArmor, all other LSMs
 - Grants full root, full capabilities, works in Xen
 - Upcoming LXC/OpenVZ support, since:
 - "If you are inside a user_namespace your capabilities will only be good for manipulating other objects [...] that you have created after you entered the user namespace"

Lessons From Last Year's Exploits

Only public exploits produce a change in public perception of security

- Kernel security wasn't suddenly horrible in 2009, I simply showed how horrible it's always been
- Dulike with Tavis v. Microsoft, I received no threats from Linux vendors
 - Although...
- In the end, stronger SELinux protections, stronger mmap_min_addr, much higher user awareness

Decade TODO List (for you) pt.1

- Remove infoleaks
 - Symbol information
 - Slabinfo
 - PAX_USERCOPY
- Remove RWX from kernel
- Protect sensitive data
 - Constify function pointers!
 - IDT/GDT/syscall table/etc
 - Vsyscall shadow table (see sgrakkyu's remote SELinux-disabling exploit)

Decade TODO List (for you) pt.2

Protect against invalid userland memory accesses in general

Make refcount overflows unexploitable

 $_{\odot}$ Currently equivalent to use-after-free

p>kmalloc(sizeof(somestruct) * attacker_len)

See recent ethtool get_rxnfc() vulnerability

Basically, secure the kernel! Your super finegrained security systems will thank you

₯ PAX_UDEREF

- Found likely oldest Linux bug ever (>= v0.01)
- vgaarb direct userland dereference
- NVIDIA direct userland dereference
- PAX_KERNEXEC
 - Enlightenment won't run (nor (all?) other memorycorruption based public exploits)
- PAX_USERCOPY
 - Found heap-based ~64kb infoleak
- PAX_MEMORY_SANITIZE
 - Found use-after-free in CONFIG_NO_BOOTMEM

Think Next Generation

∞ ASLR is a simple, useful technique

- Ineffective in several cases (ones mainline doesn't handle properly already, and others)
- Statistics-based security
- Deterministic control flow integrity
 - So long ret2libc/ROP/any other name
- The syscall table is protected how about those page tables?

Into the lion's den!