
RBAC Tutorial
Brad Spengler

Open Source Security, Inc.

Locaweb - 2012

Overview

• Why Access Control?

• Goals

• Architecture

• Implementation

• Lookup example

• Subject example

• Questions/Requests

Why Access Control?

• Access Control is just one part of system security
• Useful tool, not a cure-all
• “Modern” mandatory access control uses decades-

old technology and retains its antiquated
assumptions
▫ See Labeled Security Protection Profile (LSPP)
▫ Not Internet-connected or even heterogenous

Intranet-connected (3.3.4)
▫ No active attacker or careless admin (3.3.0, 3.3.2)
▫ Basically only accidental downgrade of sensitive info

(4.1)

Why Access Control? (cont.)

• Despite what Red Hat wants you to think, this is
not the purpose of access control:

Why Access Control? (cont.)

• Often used as a last line of defense (memory
corruption post-exploitation)

• Front line defense for certain bug classes
(arbitrary file disclosure, ../../../../etc/shadow)

• Typically not involved in reducing TCB attack
surface

▫ Proper sandboxes help here, but sufficiently
complex/efficient code will touch rare paths

▫ perf_counter()

Why Access Control? (cont.)

• Particularly useful in combination with a hostile
attack environment

▫ NX, ASLR, other userland hardening

• PaX can provide removal of arbitrary code
execution in memory

• Access Control can provide the same at the
filesystem level

Goals

• Design around Access Control strengths in
combination with anti-exploitation measures

• Protect entire system, not just specific first-party
apps

• Don’t create a “framework”, create a system with
specific intent
▫ Allows detection of stupid/wrong usage and

enables user education

• Human readable, intuitive policy with
understandable error messages and suggestions

Goals (cont.)

• Force users toward policies where base ambient
permission is restrictive and unprivileged

• Provide full-system learning to automatically
produce secure policies

▫ Generally better than those a distro or user could
create

▫ Tailored to how software is used, not how it could
be used in all configurations (inflation of ambient
permission)

Goals (cont.)

• Provide simple configuration for learning based
on questions like “what information is
sensitive?”

• Performance: < 1% impact

▫ SELinux claims 7% average hit, 10% hit on Apache

Architecture

• Kernel modifications perform policy
enforcement and generates learning logs

• Userland tool parses and analyzes policy

• Policies have the following basic structure:

Role 1

Subjects

F
il

e
s

S
o

ck
et

s

R
e

so
u

rc
es

C
a

p
a

b
il

it
ie

s

Role N

Subjects
F

il
e

s

S
o

ck
et

s

R
e

so
u

rc
es

C
a

p
a

b
il

it
ie

s

Architecture - Roles

• Roles can be applied to a user or group

• Everything without a specific role is given the
“default” role

• Arbitrary special roles can be created that can be
entered with optional authentication

▫ PAM-based authentication is also provided

• Access to a role can be restricted by taint-
propagated source IP

• Maximum umask can be enforced per-role

Architecture - Subjects

• Subjects refer to binaries or scripts
• Nested subjects are allowed: a subject whose

policy is only applied when executed by another
specified subject

• Subjects can “inherit” policy from a more generic
subject
▫ Allows to have a generic subject for unprivileged

apps
▫ All other subjects essentially show a “diff” of what

makes them privileged

Architecture - Objects

• Objects are files, sockets, resources, capabilities, and
PaX markings

• Files support access like read, write, execute,
append-only, create, delete, hardlink, set suid/sgid,
and hidden
▫ Can also create audit logs for any of these accesses

• Sockets can be restricted by family (inet, netlink,
etc)

• IPv4 sockets can be restricted by socket type,
protocol, bind address, connect destination, and
port

Architecture – Objects (cont.)

• Resource policies override those set by
setrlimit()

▫ CPU time, memory usage, max file size, etc

• Capabilities are subsets of “root” privilege
▫ See “False Boundaries and Arbitrary Code Execution”

(http://forums.grsecurity.net/viewtopic.php?f=7&t=2522)

• PaX flag support allows mandatory enforcement
of PaX flags on user binaries or mandatory
removal of flags for problem apps (e.g.
PAX_MPROTECT on java)

http://forums.grsecurity.net/viewtopic.php?f=7&t=2522

Implementation

• Does not use LSM

▫ History is interesting – initially a “trojan horse” to
allow for a commercial security module from
Immunix

▫ A decade later, still does not support stacking

▫ RBAC does much more than the LSM interface
allows

• Meanwhile, grsecurity has remained compatible
with all other LSMs

Implementation (cont.)

• Grsecurity’s RBAC system uses a combination of
pathname and inode-based matching

• File objects support regular expressions, use
anchors

▫ An anchor is the longest valid path component
from fs root not containing a regex

▫ E.g.: /home/*/.ssh anchor is /home

• Inode/device pairs are determined for files that
exist at enable time

Implementation (cont.)

• Non-existent files at enable time are specially
marked internally

• Filenames are kept stored, used when creating a file
to find and instantiate the object

• Enables idea of “policy recreation”: an object’s rules
across all roles/subjects will persist across
deletion/renaming/re-creation

• Filenames are based on the system’s default
namespace, not process fs root
▫ E.g. In a /srv1 chroot, policy on and logging of a

/bin/sh file will appear as /srv1/bin/sh

Implementation (cont.)

• Much talk in the past from other camps about
“insecurity” of pathname-based matching

▫ Mostly aimed toward AppArmor (with some
legitimate concerns there)

• Pitfalls of pathname-only matching:

▫ Rename

▫ Symlink

▫ Hardlink

▫ Mount

Implementation (cont.)

• Grsecurity’s RBAC avoids problems via hybrid
approach
▫ Rename: requires read/write access on both the source

and destination name, create on new name (and delete
if it exists), and delete on old name

▫ Symlink: Not followed by userland tool (e.g. policy on
a /tmp/hello.txt symlink to /etc/shadow can’t be
tricked to grant access to /etc/shadow)

▫ Hardlink: Requires create and link permission in
addition to any permission existing on source

▫ Mount: requires CAP_SYS_ADMIN, not supported
while RBAC is enabled

Implementation (cont.)

• No support yet for filesystem namespaces (used
by LXC)

▫ Use is somewhat nebulous, in concert with many
combinations of namespaces (pid, net, user)

 Single-application sandbox

 Entire system in a container

▫ Only handle cases where files involved with the
namespace are accessible via the main
namespace?

Implementation (cont.)

• Full-system learning creates a new subject for a
binary when it:

▫ Performs network activity

▫ Modifies a file in a protected path

▫ Reads a sensitive file

▫ Uses a capability

• When many files in a given directory are accessed in
the same way, access is reduced to the directory

▫ Gives learning predictive power

▫ ‘many’ determined by configuration

Lookup Example

• Given the following relevant objects:

▫ / h

▫ /home rwcd

▫ /home/*/.bashrc r

• We will perform a lookup on:

▫ /home/spender/.bashrc

▫ /tmp/exploit

Lookup Example (cont.)

• At each step:

Does an inode/dev exist for this path
component in policy?

Traverse to
parent

directory

Is this a regex
anchor?

Check regexes
for match (first
matches first)

Found match

Match is anchor

Lookup Example (cont.)

• No inode/dev for /home/spender/.bashrc

• No inode/dev for /home/spender

• Inode/dev found for /home

▫ It’s also an anchor

• Check /home/*/.bashrc against
/home/spender/.bashrc

• Match found, read-only access

Lookup Example (cont.)

• No inode/dev for /tmp/exploit

• No inode/dev for /tmp

• Inode/dev found for /

▫ Also called the “default” object, as it catches all
files without more specific objects

• Match found, not able to create, not able to see
file if it already exists

Subject Example

• /usr/bin/cvs

• Interesting binary as it operates both as a server
and client, depending on the context

• Policy is for the server context (in pserver mode)

▫ run as user ‘cvs’, straight from grsecurity.net

Subject Example (cont.)
subject /usr/bin/cvs

/

/* h

/etc/fstab r

/etc/ld.so.cache r

/etc/localtime r

/etc/nsswitch.conf r

/etc/mtab r

/etc/passwd r

/etc/group r

/proc/meminfo r

/dev/urandom r

/dev/log rw

/dev/null rw

/lib rx

/usr/lib rx

/home/cvs r

/home/cvs/CVSROOT/val-tags rw

/home/cvs/CVSROOT/history ra

/tmp rwcd

/var/lock/cvs rwcd

/var/run/.nscd_socket rw

/proc/sys/kernel/ngroups_max r

/proc/sys/kernel/version r

/var/run

Allows chdir(“/”) but no
file/directory listing in /

role cvs u
subject /

/ h
-CAP_ALL
connect disabled
bind disabled

Subject Example (cont.)
subject /usr/bin/cvs

/

/* h

/etc/fstab r

/etc/ld.so.cache r

/etc/localtime r

/etc/nsswitch.conf r

/etc/mtab r

/etc/passwd r

/etc/group r

/proc/meminfo r

/dev/urandom r

/dev/log rw

/dev/null rw

/lib rx

/usr/lib rx

/home/cvs r

/home/cvs/CVSROOT/val-tags rw

/home/cvs/CVSROOT/history ra

/tmp rwcd

/var/lock/cvs rwcd

/var/run/.nscd_socket rw

/proc/sys/kernel/ngroups_max r

/proc/sys/kernel/version r

/var/run

No “o” mode, so inherits
file and capability policy
from subject /, no
capability use permitted

role cvs u
subject /

/ h
-CAP_ALL
connect disabled
bind disabled

Subject Example (cont.)
subject /usr/bin/cvs

/

/* h

/etc/fstab r

/etc/ld.so.cache r

/etc/localtime r

/etc/nsswitch.conf r

/etc/mtab r

/etc/passwd r

/etc/group r

/proc/meminfo r

/dev/urandom r

/dev/log rw

/dev/null rw

/lib rx

/usr/lib rx

/home/cvs r

/home/cvs/CVSROOT/val-tags rw

/home/cvs/CVSROOT/history ra

/tmp rwcd

/var/lock/cvs rwcd

/var/run/.nscd_socket rw

/proc/sys/kernel/ngroups_max r

/proc/sys/kernel/version r

/var/run

No arbitrary
modification of CVS
history

role cvs u
subject /

/ h
-CAP_ALL
connect disabled
bind disabled

No modification of
CVS repository

Subject Example (cont.)
subject /usr/bin/cvs

/

/* h

/etc/fstab r

/etc/ld.so.cache r

/etc/localtime r

/etc/nsswitch.conf r

/etc/mtab r

/etc/passwd r

/etc/group r

/proc/meminfo r

/dev/urandom r

/dev/log rw

/dev/null rw

/lib rx

/usr/lib rx

/home/cvs r

/home/cvs/CVSROOT/val-tags rw

/home/cvs/CVSROOT/history ra

/tmp rwcd

/var/lock/cvs rwcd

/var/run/.nscd_socket rw

/proc/sys/kernel/ngroups_max r

/proc/sys/kernel/version r

/var/run

No rwx access to
filesystem

role cvs u
subject /

/ h
-CAP_ALL
connect disabled
bind disabled

Subject Example (cont.)
subject /usr/bin/cvs

/

/* h

/etc/fstab r

/etc/ld.so.cache r

/etc/localtime r

/etc/nsswitch.conf r

/etc/mtab r

/etc/passwd r

/etc/group r

/proc/meminfo r

/dev/urandom r

/dev/log rw

/dev/null rw

/lib rx

/usr/lib rx

/home/cvs r

/home/cvs/CVSROOT/val-tags rw

/home/cvs/CVSROOT/history ra

/tmp rwcd

/var/lock/cvs rwcd

/var/run/.nscd_socket rw

/proc/sys/kernel/ngroups_max r

/proc/sys/kernel/version r

/var/run

role cvs u
subject /

/ h
-CAP_ALL
connect disabled
bind disabled

Warning! No
network policy
specified, allows
any normally-
permitted network
activity! Gradm
will alert you to this

Questions/Requests?

• Tried RBAC before and had a policy question?

• Features you would like to see?

• Thank you for supporting the research and
development of grsecurity

