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What is the Translation-Lookaside Buffer (TLB)?

A Virtual Memory (VM) and Memory Management Unit (MMU)
A A simplified view:
A Software operates within many various virtual address spaces
A Hardware operates within a single physical address space
A Virtual address != physical address

A Translation is needed



What is the Translation-Lookaside Buffer (TLB)?

A Virtual Memory (VM) and Memory Management Unit (MMU)

A A simplified view:
A Software operates within many various virtual address spaces
A Hardware operates within a single physical address space

A Virtual address != physical address
A Translation is needed

A Paging and page tables
A a2 KXaX«®JO -« 2TX°J KZ -Z E 3°AJK 5X2a-3E
A Physical memory split into frames of standard sizes (4K, 2M, 1G)
A Virtual memory address space split into pages of physical frames sizes
A Physical framesmapped to virtual address spaces to back virtual memory pages

A Extra metadata of virtual memory pages:Present , Read/Write ,User/Superuser W Z



What is the Translation-Lookaside Buffer (TLB)?

Example schematic of 4level page tables

Format of typical 4K virtual memory page

Table 5-20. Format of a Page-Table Entry that Maps a 4-KByte Page

Source:

Bit N Contents
Linear Address Position(s)
47 39 38 30 29 2120 12 11 0 0(P) Present; must be 1 to map a 4-KByte page
| |PML4 | Directory Pir Directory Table Offset 1 (R/W) Read/write; if 0, writes may not be allowed to the 4-KByte page referenced by this entry (see Section 5.6)
/ ‘ 9 9 2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 4-KByte page referenced by this entry (see Section
9 12 _4-KByte Page 56)
Physical Addr 3 (PWT) Page-level write-through; indirectly determines the memary type used to access the 4-KByte page referenced by
this entry (see Section 5.9.2)
FTE e
. 10 4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the 4-KByte page referenced by this
Page-Directory- PDE with PS=0 o entry (see Section 5.9.2)
Pointer Table 40 Page Table
A Page-Directory 5(A) Accessed; indicates whether software has accessed the 4-KByte page referenced by this entry (see Section 5.8)
= PDPTE | ~] 40 6 (D) Dirty; indicates whether software has written to the 4-KByte page referenced by this entry (see Section 5.8)
/g 7 (PAT) Indirectly determines the memory type used to access the 4-KByte page referenced by this entry (see Section 5.9.2)
h 8 () Global; if CR4.PGE = 1, determines whether the translation is global (see Section 5.10); ignored otherwise
10 10:9 lgnored
— PML4E ) . B ) - . ) B
11(R) For ordinary paging, ignored; for HLAT paging, restart (if 1, linear-address translation is restarted with ordinary
paging)
o M-1)12 Physical address of the 4-KByte page referenced by this entry
40
51:M Reserved (must be 0)
! CR3 or HLATP
58:52 lgnored
Figure 5-8. Linear-Address Translation to a 4-I{Byte Page Using 4-Level Paging 62:59 Protection key; if CR4.PKE =1 or CR4.PKS = 1, this may control the page’s access rights (see Section 5.6.2);
otherwise, it is ignored and not used to control access rights.
63 (XD) If IA32_EFERNXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 4-KByte page controlled by
Intel® 64 and k82 Architecture§ 2 TG 6 NB 530St 2 LISNDRA al ydz f this entry; see Section 5,6); otherwise, reserved (must be 0)




What is the Translation-Lookaside Buffer (TLB)?

A Virtual Memory (VM) and Memory Management Unit (MMU)

A Paging and page tables page walk

A

Every time a virtual address is being accessed by SWA CPU has to perform a page walk

A CPU has dedicated page walk HW units to perform this process transparently

A page walk begins by getting physical address of a top page table from a dedicated registerGR3on
x86)

A This table memory has to be fetched, indexed, metadata flags need to be examined

From the fetched and indexed table next level page table physical address is obtained

A Again, this table memory has to be fetched, indexed, metadata flags need to be examined

This traversing continues until the lowest level of the page table hierarchy provides actual memory
address

This process is very expensive



What is the Translation-Lookaside Buffer (TLB)?

A TLB is a (set of) cache buffer(s) automatically storing previous, successful page walk results
A TLB cachesrecent virtual address to physical addresstranslations Z
AZ J«T J ~A22aJ3E -Z ©°3JEX3 XT °JzX °JMKX X«°3 X~ axo



What is the Translation-Lookaside Buffer (TLB)?

A TLB is a (set of) cache buffer(s) automatically storing previous, successful page walk results
A TLB cachesrecent virtual address to physical addresstranslations Z
AZ J«T J ~A22aJ3E -Z ©°3JEX3 XT °JzX °JMKX X«°3 X~ axo

A Typical TLB consists of entries referenced by a virtual page number (e.gvirtual address >> 12 )
A Typical TLB entry consists of:
A Physical frame number (physical address =ffame number << 12 ) +offset )
A NNX"~ 3z | °F Z3 -2 °JzX 9JMKX Z X«o°3 X’ A” XT z-38 ©
A Logical AND of Read/Write flags
A Logical AND of User/Superuser flags
A Additional page table metadata attributes



What is the Translation-Lookaside Buffer (TLB)?

A Organization of TLB hardware may differ across various CPU microarchitectures
A TLB can be split into independent: instruction TLB (TLB) anddata TLB dTLB)
A Different number of entries
A Due to different spatial and temporal characteristics of accesses
A Different metadata flags cached

A For example: code does not need a dirty flag

A Multiple levels of TLB buffers
A For example:
A First level: iTLB + dTLB
A Second level: unified TLB



What is the purpose of TLB?

A Probably obvious at that point A PERFORMANCE
A TLB caches recent translations obtained with expensive page walks
A A principle of temporal locality applies:
A Recently used virtual memory page is likely to be reused again soon
A Each TLB Hit is a huge win
A TLB acting as an intermediate cache allows to:
A Pipeline and/or parallelize fast TLB Hits with slow TLB Misses
A 8A° " - A3 NX XE° X«  AX J«T "HK-C C-3! o©o. |J3TCJI3X °Jz
AZ C| KX !''XX° “X3/&F «z A2# , ©°©° 2 A N!KE
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TLB quirks and peculiarities

A TLB caches entries only forsuccessful page walks
A Each page table level entry used for a translation has to have:
A Present flag set
A Reserved bits zeroed
A Intel SDM:
A zhe processor does not cache a translation for a page number unless the accessed flag is 1 in each of the
paging” © 3 AN° A3 X X«°3 X~ A" XT TA3 «z ©°3J« XJ° -«yZ
A Software can use it for deciding if invalidation is needed
AzZg MXZ-3X NIN| «z J °3J« XKJ° -«W °| X °3-NX"~ -3

A This can be used for page walk detections

A This obviously affects the need for invalidation



TLB quirks and peculiarities

A . «° XK the grécgssor may cache a translation for any linear address, even if that address is not used to access
memory

A TLB may store for example:
A Translations for memory prefetches
A ZINNX" 7~ X" ©°]Jo 33X  AX° z3z-a ~°XNAXI° AEX XEXNA° - «
°Jo| z

A Side-channels, sidechannels everywhere!

A . «° XK On&processor supporting Hypdihreading Technology, invalidations performed one logical processor
may invalidate entries in the TLBs and pagistjucture caches used bgtherXX- z NJ X °3 - NX~ ~ -3~ Z

A In other words: making assumptions about presence or absence of TLB entries isisky!



TLB quirks and peculiarities

A TLB may cache a huge page (e.g. 2M or 1G) translation as multiple 4K pages translations
A This implementation detail is not visible to software
A 1t may complicate explicit invalidation requirements for such huge page translation
A TLB may contain several distinct translations for the same physical memory addresses at once
A For example:
A TLB contains an existing 4K virtual page translation
A Software modifies a corresponding page table entry, so the virtual page size changes (e.g. 2M)
A Accessing the virtual page now may lead to allocating a completely new TLB entry
A Which entry should be used for subsequent accesses?
A . «° XK Whighargnslation is used may vary from one execution to another, and the choice may be
implementationspecifi

A Making assumptions isrisky again!



An Introduction to paging -structure caches



Introduction to paging -structure caches

A TLB isnot the only cache buffer used for optimizing expensive page walks
A Modern CPUs usually implement also caches for highetlevel page table entries
AL« JTT ©° -« ©°- 9| X A2#Z ¥
A A memory address final translation
A Obtained from the lowest -level page table entry

A A summary of alklevel page table entries metadata flags



Introduction to paging -structure caches

A The principle of temporal and spatial locality applies again:
A Regardless of a TLB capacity and its state, the same highelevel page table entries may be reused
frequently
A#XNIJIA X ©°| XE °J3°o N °JoX « &J°° «wz KJI3?z X3 °- 30 .
Az -3 2JE MX -AddrésFspadémaNpings of common, shared data (e.g. kernel code,
libraries)
A Caching them may noticeably improve performance of many workloads on modern OSes
A Typically distinct paging-structure caches exists for all higherlevel page tables
A Caching higherlevel page table entries help reduce a page walk cos#y performance
A Any cache hit shortens the page walk

A The lower the level A the shorter the page walk necessary



Introduction to paging -structure caches

A Exemplary PDPTE (8 level page table) cache properties
A Entries indexed with only a part of the virtual address B depending on the paging mode
A Example: 4level paging modeA bits 47:30, just 18 bits
A Typical cache size issmall Ddepends on a CPU microarchitecture implementation
A Entries contain:
A Physical address of a PDE page table (? level page table)
A A summary of this and higher-level page tables entries metadata flags
A Logical AND for: Read/Write and User/Superuser
A Z etc

A Similar characteristics and properties apply to all other (higher and lower level) pagingstructure caches



Paging-structure caches — more details

A Huge pages entries are not cached in pagingstructure caches
A 1G pages havePS bit set in the 3 level page table entries
A No need for lower -level page table entries
A 2M pages havePS bit set in the 219 level page table entries
A No need for PTE
A These are handled by TLB

A Similarly to TLB requirements:
A Only entries of present and valid (no reserved bits set) pages are cached

A Accessed flags of the page table entries involved in the page walk are set by the CPU



Paging-structure caches — more details

A According to documentation: CPU is free to create a pagingstructure cache entry at any time
A Even when there are no translations for virtual addresses using the entry
A Similar to the TLB case:
A ZThe processor may create entries in pagisigucture caches for translations required for prefetches and
or accesses that are a result of speculative execution that would never actually occur in the executed code
pathZ

A K3 XJTE N3 XJ°XT NJIJN| X X«°3E aJE 38Xa] « A«2a-T Z XT 38XzJ
page tables

A Need to explicitly invalidate

A Entries are associated with the current PCIDD more on this later



TLB and pagingstructure caches interaction

A How does CPU use TLB with pagingstructure caches?
A In case of a direct TLB hit A TLB entry data is used immediately
A In case of aTLB miss
A Pagingstructure cache for 2n level page table entries (PDE) may be consulted
A In case of acache hit A quick page walk (just PTE is needed)
A In case of acache miss
A Pagingstructure cache for 31 |evel page table entries (PDPTE) may be consulted
A In case of acache hit A shorter page walk (just PDE and PTE needed)

A In case of acache misgy Z
AZ J«T =~ - -« TX°X«T «z -« °| X NIN| X" JA&E]

A If CPU misses in all the cachesp a full page walk is scheduled

KJ MK XZ



Why and when a TLB invalidation i1s needed?



TLB invalidation — why?

A In case of aTLB hit:
A CPU may use found TLB entry to determine apage frame, access rights and other attributes
A CPU will likely NOT consult the page tables in memory
A As mentioned earlier:
A ZThe processor may retain a TLB entry unmodified even if software subsequently modifies the relevant-paging
structure entries in memor¥
Az J«T ~J2aX " -stfuétukeXcaches!®* ° Jz «z
A In other words:
A Invalidation is needed to maintain coherency between translation caches (TLB, pagingstructure caches)
and page tables in memoryat all times

A Without this coherency: system stability and security is gone



TLB invalidation — when?

A Whenever the in-memory page table entries and their potentially cached values might be outof-sync?
A Excellent guarantees, but terrible performance
A Whenever software modifies page tables?
A Not necessarily, remember the requirements for caching (Present bit set,etc)
A Some modifications can assume the entry is not in cache
A Whenever virtual address space changes?
A Whenever one process (page table A) is context switched into another process (page table B)?
A What if they share some memory pages?

A What about common kernel code?



TLB invalidation — when?

A Invalidating too much is very bad for performance
A Operating systems try to invalidate only:
A F| X« «XNX""J3E J«T Z
AZ C|]J° 3XJIKKE «XXT" °- MX ZKA | XT

A Invalidating too little however makes performance not matter at all

A In reallife situations discussed later, we will see how problematic this can be
A2-ax -°0 a [EJo _« J°7Raco .’ a z]0 .0 | _KT
AZ J«T MX ~A°X3 N-2°KXE ©°- 3XJ -« JM-A°
A «TZ -Z N-A3" XZ J M3-! X« $;C @ N3-N-TXYVYY



Hardware optimizations



Hardware optimizations

A Hardware features have been added to CPUs in order to:

A Help software maintain the translation cache coherency more efficiently

A Eliminate unnecessary invalidation of frequently used translation entries
A The features:

A Global Pages

A Process Context Identifiers (PCID)

A Virtual Processor Identifier (VPID) P virtualization feature (vCPU tagging)
A All the features are optional, but can be also used all together

A Most if not all of modern OSes use PCID

A Some of the OSes additionally rely on Global Pages

A Examples: FreeBSD



Hardware optimizations — Global Pages

A Global Pages feature was added to limit unnecessary invalidations of frequently used pages
A For example: shared memory pages between different virtual address spaces
A Common code (libraries)

A Always mapped-in kernel memory

A Whenever virtual address space is being changed (on a task switch or process context switch)
A The corresponding page tables have to be changed as well
A Thereby, on x86 a full TLB flush is triggered by:
A All writes to the CR3 register

A A hardware task switch

A Flushing and then hitting TLB misses for the same memory accesses is a waste



Hardware optimizations — Global Pages

A Enabling Global Pages feature PGEbit of CR40on x86) makes CPU respect addition flag in page table entries
A Global flag (G)

A Software can decide what are the shared or frequently used virtual memory pages and mark them as global
A By setting the G bit in their lowest -level page table entry

A Note: there is no G bit for higher-level page table entries

A When enabled, TLB entries with a global flag are not invalidated automatically when page tables are reloaded

A Automatic avoidance of TLB misses for shared memory



Hardware optimizations — Global Pages

A, - CXAEX? Z
A Global pages take up TLB entries
A A good balance is needed to avoid TLB thrashing
A Invalidation of global pages is more complicated

A Might not be worth it, when it has to occur often

A Some quirks:
A Global pages do not affect the behavior of pagingstructure caches at all
A Only higher-level page table entries cached there
A Global pages entries in TLB might be used by CPU regardless of their specific PCID
A+K-MIKE 2XJ«” zK-MIK JZ° X3 JKKZ oz’

ZXOO



Hardware optimizations — Process Context Identifiers (PCID)

A PCID feature was added to limit the need for translations invalidation

A 1t enables software to tag different virtual address spaces with different (almost) unique identifiers

AZ J«T ©°| X3XME JKK-C° $;C° ©°- XJ° KE T “° «zA | MX°CXX
A CPU can consume cached translations only for thecurrent address space (current PCID)
A No need to invalidate other virtual address space translations proactively

A Hardware will flush translation entries when it needs space for new ones (e.g. using LRU algorithm)

A Frequently used translations, even from different address spaces, can remain in the translation caches
A Maintenance simplification

A Big potential performance gain



Hardware optimizations — Process Context Identifiers (PCID)

A PCID is a 12 bit identifier A up to 4096 different virtual address spaces can coexist
A PCID of zero is the default (also: current) one
A Setting PCIDE bit in CR4register (on x86) enables nonzero PCIDs
A The current address space PCID is indicated by the 12 LSB bits of theCR3register (x86)

A Switching page tables during process context switch allows to specify different PCID

A CPU creates entries in TLBand paging-structure caches tagged with the current PCID
A Z J « T onlythése entries that are tagged with the current PCID (unless global)
A Hardware-level logical address space translations isolation
A Disabling PCID (via unsettingPCIDE bit in CR4) triggers entire translation cache hierarchy invalidation

A PCID of zero becomes again the current and only one PCID
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Operations triggering TLB invalidation

127 6463 121 0

Linear Address PCID

A x86 instructions:
A INVLPG <virtual address> Figure 1-25. INVPCID Descriptor

A Invalidates any TLB entry for the specified virtual addressand current PCID

A Invalidates any global page TLB entry for the specified virtual address forall PCIDs
A Invalidates all entries in all paging-structure caches for all virtual addresses of the current PCID
A INVPCID <type>, <descriptor>

A Descriptor points at 128 bit memory structure, where virtual address and PCID are specified

A Type operand controls the scope of invalidation:
A (0)Address® « EJ K TJI° X J«E A2# X«°3E J«-° zK-MIKD Z-:
A (1)SinglecontextD « AJK TJ° X JKK A2# X«°3 X~ 3F«-° zHK-MIFK
A (2) All contexts with globals Dinvalidates all TLB entries for all virtual addresses and all PCIDs
A (3) All contexts Dinvalidates all TLB entries (not global) for all virtual addresses and all PCIDs

A Invalidates entries in all paging-structure caches according to the type and descriptor operands



Operations triggering TLB invalidation

A Other operations:
A Disabling paging (e.g. unsettingPGbit of CROon x86)
A No surprises hereDinvalidates everything everywhere
A Page table switch (e.g. writing to CR30n x86)
A With PCID disabled Pall TLB (but noglobals) and pagingstructure caches entries
A With PCID enabled B depends on the MSB (63) bit of the CR3value
A 0 Pbinvalidates all TLB (noglobals) and pagingstructure caches entries for a new PCID
A 1 Bno invalidation (utilizing PCID feature isolation capabilities)
A Disabling/Enabling of Global Pages feature
A Invalidates everything everywhere
A Disabling of the PCID feature

A Invalidates everything everywhere



Operations triggering TLB invalidation

A Exceptions:
A Page Fault exception ¢PF) also invalidates entries in TLB and paginestructure caches
A #PF exceptions result from accessing a virtual memory address
A Various reasons: page not present, reae « KEW °3 &£ KXz X £ -KJ° -«Ww Z
A Upon #PF the following happens:
A TLB entries for the #PF virtual address (stored inCR2on x86) and current PCID are invalidated
A Only paging-structure caches entries relevant for the virtual address translation and current

PCID are invalidated

A #PF induced invalidations are to prevent reoccurring exceptions due to stale translation caches

entries

A Virtualization transitions (VMEnter and VMEXit ) also invalidate TLB and pagingstructure caches entries



TLB Shootdown — inter-processor invalidation

A TLB and pagingstructure caches are typically per logical CPU resources each logical CPU has their own
A On processors with multiple cores and/or supporting hyperthreading coordinated invalidations may be required
A Upon modification of the in -memory page tables multiple CPUs may contain stale translation entries
A Not enough for the page table modifying CPU to invalidate only its own translation caches
A A TLB Shootdown operation must be initiated, so the translation cache hierarchy across all CPUs is in
sync
A TLB Shootdown:
A Usually implemented using execution barriers and interprocessor interrupts (IP1)
A Procedure overview:
A Initiating CPU before the in-memory page table modification traps all necessary CPU on a barrier
Az 2-T Z X~ 9| X °JzX 9IJMKX J«T °X3z-3ar ° " . C«
Az = z«JK  °- 9] X ©°93]J°°XT $:C° ©°- °X3z-3a o] x 3

A All CPUs resume execution

K«

«



When software hasto invalidate TLB?

A Modification of a page table entry mapping a virtual memory page
A Software should issue INVLPG for all related virtual addresses
A One INVLPG per page number is enough
A Modification of a page table entry mapping another page table entry
A 1.e. modification of a higher-level page table
A &X° X«T «z -« 9] X ©°9J3zX° °JzX °9JMKXZ’ aJe°e° «wz’ N- A«?©
A Many mappings: full invalidation (e.g. viaCR3register write) might be the best choice
A Otherwise, individual INVLPG invalidations for the mappings might be optimal
A Even if there is none D e.g. target page table entries have all pages not present
A Still at least one INVLPG is necessary!
AF| Ey H-A C KK ~ XX KJ°X3Z



When software hasto invalidate TLB?

A Modification of a page table entry size
A Huge page mapping
A May lead to multiple translations in TLB for the same virtual addresses
A One for the new huge page and one or more for the previous 4K pages
A CPU may useany of the available translations

A To avoid this, software has to first invalidate all affected translations

A Page table entry modification write might get re -ordered and get executed after a subsequent memory access
A This can create a stale translation entry

A Invalidation instructions are all serializing instructions



When software hasto invalidate TLB?

A PCID identifier re-use
A PCID value space is relatively small (12 bi® 4096 distinct values)
A There may be more than 4096 virtual address spaces running concurrently on a system
A Software has to re-use same PCID for different virtual address spaces
A To avoid collisions in TLB and pagingstructure caches:
A Invalidate all translations for the new PCID
A The CR3bit 63 serves that purpose, but does not invalidate global entries
A For global entries more drastic measures have to be used:
A All context with globals INVPCID
A Disable A Enable Global Pages



When software does not have to invalidate?

A Modification of a page table entry mapping a non-present virtual page
A Translations for non-present pages are not cached (neither in TLB nor paginestructure caches)
A In other words: making a non-present page present does not require invalidation
A Unless the page was present before and no invalidation has occurred since!
A Modifying access flag of a page table entry
A 0 ->1 Pneither TLB nor paging-structure caches stores translations for untouched entries
A 1 -> 0 Bwithout invalidation CPU might not set the flag on a subsequent accessP not fatal
A Modifying Read/Write flag of a page table entry
A Read-only A Writeable D without invalidation #PF exception may occur
A Not fatal, but sub-optimal
A #PF will invalidate the cached translations

A Writeable A Read-only B fatal without invalidation



When software does not have to invalidate?

A Modifying User /Superuser flag of a page table entry
A User A Superuser D fatal without invalidation
A Superuser A User - without invalidation #PF exception may occur
A Not fatal, but sub-optimal
A #PF will invalidate the cached translations
A Modifying dirty flag of a page table entry

A 1 -> 0 Bwithout invalidation CPU might not set the flag on a subsequent write B not fatal



When software does not have to invalidate immediately?

A . «° XK ? &Thedricessox fray retain entries in the TLBs and pagitrigcture caches for an extended period of
time. Software should not assume that the processor will not use entries associated with a linear address simply

because time has passg&d

A Example: unmapping (or remapping) a part of a virtual address space
A Unsetting page table entries Present flag
A Two cases:
A (case 1) Page table entry mapping a page

A (case 2) Page table entry mapping another page table



When software does not have to invalidate immediately?

A What can go wrong without immediate invalidation in general here?
A If OS re-uses the freed portion of the virtual address space
A Stale translation entries point at different physical memory (or with different access rights)
A Immediate fatal consequences
A If OS re-uses the physical memory behind the freed portion of the virtual address space
A Stale translation entries allow to access the same physical memory
A Potentially with different access rights
A z#A° «- 9| «z A~ X’ o X Z3XXT &£ 3°AJK JTT3 X~ " JNX
A?2AN| J° Aaco .« A" AJKKE T X ZJ °Z
A 2?2°XNAKI° AEX XEXNA° -« X«2X3 " ©°] X ~“ NX«XZ



TLB Invalidation — When Software does not have to invalidate immediately?

A What can go wrong without immediate invalidation in the case 2?
A . «° XK y2h& prdcesgor may create an entry in a pagiagucture cache even if there are no translations
for any linear address that might use that entfy
A What does that mean?

A CPU can populate paging” © 3 AN°© A3 X NJN| X~ Jo° °° . C« T ~ N3 Xo°

A KB - L« X T2-8&BPYCIB X | JT aJ3 !XT Z«-° °3X  X«°Z JXXK X«°
subsequently create a PDEache entry for the PDE that references that page table

A 8«X @aJE ©°| «! 9] Jo ° T- X" «-°9 7 -A«T °-- MITZ
A FXKKW KX°Z  ~ XXZ



PaX/grsecurity PRIVATE KSTACKS bug



Pax/grsecurity PRIVATE KSTACKS

A What is the PRIVATE KSTACKS feature?
A Private kernel stacks hardening enhancement introduced inPaX/grsecurity around February 2022

A Kernel will disallow access to all process and IRQ kernel stacks except for the ones used by the
currently running task on a given CPU
A All-but-current process stacks not mapped
A IRQ handlers cannot view other CPU IRQ stacks

A This defence mechanism:
A Completes the protection by PAX_RAP_RET and PAX_RAP_XOR
A Prevents cross-kernel stack attacks and stack overflow/underflow attacks
A Addresses attack that causedRFGto be shelved, without requiring CET/HW shadow stacks

A Return Flow Guard - Microsoft attempt at backward -edge Control-Flow Integration

A For shelved reason, see slide 27 ofThe Evolution of CFI Attacks and Defenses



https://xlab.tencent.com/en/2016/11/02/return-flow-guard/
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2018_02_OffensiveCon/The%20Evolution%20of%20CFI%20Attacks%20and%20Defenses.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2018_02_OffensiveCon/The%20Evolution%20of%20CFI%20Attacks%20and%20Defenses.pdf

PaX/grsecurity PRIVATE KSTACKS- Example (without)

Task Workthread Task

Task Struct Process
Stack

Task Struct Process
Stack

Can corrupt retaddr!
retaddrl <

retaddrl

But needs to write retaddr2

char to outbuf!
outbuf[32]; «

crypto_shash_diges{desc,in_data, len, &outbuf); Writes to outbuf



PaX/grsecurity PRIVATE KSTACKS- Example (without)

A We have two tasks of many on the system
A A waiting task that just called a synchronous crypto API that will provide a hash digest in its on-stack
output buffer

A A running workthread task doing the actual work

A Without PRIVATE KSTACKS
A Theworkthread © J ! « XXT ~ ©°- C3 ©°©X ©°. J MAZZX3 -« °| X CJ o
A#Aow ©°| ~ JKB - JIJBK-C MAz" XE ~° «z « ©°|J° N-TX ©°-

A Including its other local variables or return addresses
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Task Workthread Task

Task Struct Unmapped
Process
Stack

Task Struct Process
Stack

$ J «chrfupt retaddr!

retaddrl retaddrl

dNolocald

age .
pag Write to outbuf retaddr2

happens without

char stack map/unmap

outbuf[32];

crypto_shash_diges{desc,in_data, len, &outbuf); Writes to outbuf
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A With PRIVATE KSTACKS

A Al X CJ ° «z ©°J° 'z~ ~©°JN! "~ N- 2 ° K XWokkihfeadAaglke J ° ° XT Z3 -

A The possibility to corrupt the return address or other local variables is gone
A The workthread task still needs to write to the output buffer
A A naive approach would involve mapping/unmapping® | X -°| X3 ©°J ! 7~
A Not good for performance or security!
A The PRIVATE KSTACKS feature changes out the backing storage for that stack variable
A « XC 3 Xz -nelocalZz- 3EJAN|IMKZX ™ JKK-NJI° - «
A This allows the output buffer to be visible to the workthread task

A Without any performance -affecting map/ unmap operations

"o JN! ZA

- « 9 XT
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A Contemporary systems usually consist of multiple CPU cores executing processes in parallel
A Due to a multitasking nature of OSes, these processes are constantly being scheduled and preempted
A Usually there is more processes than CPU cores and all of them must receive CPU time
A Process context switching involves page tables switching
AZ J«T A AJKBKBE 3X2A 33X~ ~-ax 0373« KIJO -«
A Resumed processes might not continue execution on the same CPU

A TLB Shootdown to keep translation caches coherent might be needed

«AEIJHK TJ
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A With PRIVATE KSTACKS featureall-but-current process stacks are not mapped

A C°-« °3-NX"" N-«°XE° ~C °N|] ©°] X °38XXa°oXT °3.NX"~

stack mapped
A That involves page table entries modifications as well as TLB invalidation
A Here, it also involves all kernel context stacks on and during every context switch
A A meticulous selection of stacks allowed to be mapped is also needed
A A naive implementation of this feature could involve a lot of page table operations leading to complex and
expensive TLB maintenance requirements
A The actual PRIVATE KSTACKS feature implementation uses various techniques, that significantly reduce this
complexity and cost A limiting the TLB invalidation requirements to the minimum
A The most important one here: optimized page tables
A Minimizing amount of mapping tables for each page table level

A Page table re-use for kernel stacks mapping during context switching



Pax/grsecurity PRIVATE KSTACKS

A=A °X J C| KX JzZoX3 ©°| X ZXJ°A3X |JT MXX« N-23°KX°XT CX
A Rare, but reproducible #PF exceptions during process context switches
A Always involving previous and next kernel stacks pages accesses
A Impossible to explain based on preceding page tables operations and page tables content
A ?2° A3 - A « «JOA3XZ wA"o Z«-3 «z °| X2 CJ° X«-Az]|
A That suggested: no error in page tables, everything was mapped as expected
A Never reproducible in virtualized environment (from within a VM)
A Seemingly only reproducible on backthen new Intel CPUs of Alderlake family
A These CPUs consists of so called Reores (performance ones) and Ecores (slower ones)
A The problem seemed to be bound to the Ecores only
A Super rare (a handful of occurrences) RAP violations indicating kernel stack data corruption

A Impossible to explain and completely indeterministic
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A How do you debug a bug that makes no sense?

A K-° -7 | - A3’ T X«® 3X°3-TAN «zw K & ° «z
A Finally, at some point, we noticed a pattern
A Always two re-used and consecutive 29 level page tables were involved
A New: currently mapped and previously unmapped
A Old: currently unmapped and previously mapped
A Both of the page table addresses had same bits 47:21
A The #PF always involved a kernel stack address, whose page table entries indicated:
A Itis currently mapped using the new 2" [evel page table entry
A 1t was mapped just before when using the old 2" [evel page table entry

A Itis not mapped (present) currently when using the old 2 level page table entry

~ N

° XW
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Ox £ £ £ £
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1111 1110 1000 0000 0011 0000 0000 0000 0000 0000 0000 0000
9 bits 9 bits 9 bits 9 bits
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0 384 0

Page Table L4
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511

CR3

Page Table L2

|
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Page Table L1
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511
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Page Table L3

511
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511
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509 |
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Page Table L4 . Page Table L3 Page Table L2 Page Table L1
0 »[ 0 Page Table L2 —I N
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A Al J° 3J«z J MXKKZ
A Thepaging” ©3 AN°© A3 X NJIJN| X~ 2 z|©° MX J° °KBJE | X3 XZ
A K -Ww CX CX3X«Z° JMKX ©°- 3X°3.TANX « J E5Z
AZ J«T E5G ©°3J«” ©° -.gtfuctufecactleg A" | °| X °Jz «z

A But why?
A The spurious nature of the #PF indicated that there was no mistake in page tables:
A Previously unmapped page does not need invalidation as norpresent pages translations are not
cached
A There was no architectural memory access that could potentially populate the translation caches with
previously unmapped 24 level page table

A CPUs of other microarchitectures did not exhibit this problem at all
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A Then a couple of documentation snippets caught our eye:

A ZThe use of the PDE cache depends on the paging mode: [...]{@red paging, each PDEache entry is referenced by
a 27-bit value and isused for linear addresses for which bits 47:21 have that valtie

A ZThe processor may create an entry in a pagisigucture cache even if there are no translations for any linear address
that might use thatentry. Thus, Z ~ - Z° CJ3 X | J~ 2J3! XT Z«-° °3X" X«©°Z JXXK
subsequently create a PDEache entry for the PDE that references that page tablassuming that the PDE itself is
a 33! XT 22838 X X«°ZQVY

A ZThe processor may create entries in pagisigucture caches for translations required for prefetches and for accesses
that are a result of speculative execution that would never actually occur in the executed codepath.

A Zf the processor does not find a relevant TLB entry, it may use the upper bits of the linear address to select an entry
from the PDE cache that is associated with the current PCID (Section 4.10.3.1 indicates which bits are used in each

paging mode). It can then use that entry to complete the translation process (locating a PTE, etc.)



Pax/grsecurity PRIVATE KSTACKS

A That made us develop a hypothesis:
A Whatif Alderlake$; C-€- { X~ J3 X 23-3X 7z X« @ ©°© [EXZ J«T -2-3X
" 03 AN° A3 X NJN| X’ X«©3 X~ 7Z
A Z XEX« Z4rédnsladtigns® %2-A 3 «z °Jz X °JMKX  Z
A Z 2X3XKE MJ  XT -« J ~ °-uédNandacddss padternk spécifiodstie PRIVATEK ©~ 3 X
KSTACKS feature?
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A More specifically, what if the following happens:
A Previous kernel stack page is unmapped and its translations are invalidated
A Current (new) kernel stack page becomes mapped, but does not have any entries in TLB (yet)
A The previously used and now unmapped 24 4 X X 5 ° J z X rémains i Yafing sikuetdré dache
A 1t has the same indexing bits as the new page table page

A When a new kernel stack access triggers a page walk, it uses stale entry from the pagingtructure cache
A When such misdirected page walk returnsanon® 3 X~ X«©° °3 X&E - A~ | X3 «XK ~°J]
A #PF exception is thrown
A F] X« ~AN|] 3 T 3XNOXT °JzX CJIJHK! 3X0A3«” J °3X  X«?©
A O JN! TJ°J N-33A°0° .« NJIJ« |J°°X«Z
AZ KBXIT «z ©°- °9| X A««XE°KJ «JIJMKBEX > : £ -HKJ° - «’
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A 2Xoez” ox o o] X |E°-°| X" ~ ¢ °| J :-%$2Z
A The PoC presented here is a simplified approximation of the chain of events, that happen during the PRIVATE
KSTACKS context switch and that could lead to the unexpected#PF exceptions

A Primary objectives of the PoC were:

A Prove pagingstructure cache involvement and anticipated behavior

A3 - EX 9| X zA« 2 AMderldkeCRUs- Z ° | X . «° X}

A Same PoC should reproduce only of these CPUs
A Reproduce the issue inside a VM, by better controlling of VMX transitions occurrences

A Help to develop best (performance-wise) fix for the issue
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The PoC begins by selecting two arbitrary virtual addresses to become the bases of two distinct address spaces

_ptr({ADDR1);
_ptr(ADDR2);

Then, we allocate and map in the first address space, which consists 0502 consecutive 4K pages

NR 512
SKIP 1@

void *vals[NR];

(int i = 8; 1 < NR - SKIP; i++) {
frame t *frame = get free frame();
vals[i] = vmap 4k(addrl + i * PAGE_SIZE, frame->mfn, L1 PROT);
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Next, we allocate and map in the second address space, which consists dd12 consecutive 4K pages

A full 2MB range

void *va2s[NR];

{'ilr'l‘,‘_' i = ?_." i £ NR_-', i++:|' {
frame t *frame = get free frame();
va2s[i] = vmap_4k(addr2 + i * PAGE_SIZE, frame->mfn, L1 _PROT);

§
1

Then, we obtain 2" level page table entries for both of the base addresses and make a backup of the default
N- «© X«® Z-3 0] X 7~ XN-«T JTT3 X"~ Z X«O93E

pde t pde2 bak = *pdel;
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Now, we can predict the virtual address of the expected spurious #PF
It is an address of the first unmapped page from the 2MB range of the first address space

Remember: we only mapped in 502 of 4K pages

MR 512
SKIP 1@

printk("\nExpected #PF at address: %p\n", addr2 + (NR - SKIP) * PAGE_SIZE);
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c1i();
(1) {
Finally, by running the main loop, we should be able ;I?fi{-:'l?:(_r;c.ie'}!_baki
to trigger the predicted spurious #PF exception
mfence(); sfence(); lfence();
Al X KB--° T-X" °| X Z-H

At its second iterations, we should hit the

paging” © 3 AN° A3 X NJNJ| X N- (int i = 0; 1 < NR; i++)

asm ("mov (%@), %Xrax" :: "r" (va2s[i]): "rax");
printk{"Iteration: %u\n", iteration++);
flush_tlb();

*pde?2 = *pdel;
barrier();

flush_tlb();

prefetcht@®(addr?);

barrier(); mfence(); sfence(); lfence();
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And there we have it!

KTF - Kernel Test Framework!

Running tests

Running test: test privkstack
CPU[@]: Scheduling task tl[@] (LOOP)
CPU[®]: Running task t1[@]

addrl: fffffed@30000000
addr2: fffffedsdl2080000

Expected #PF at address: fffffe88413f6000

Iteration: @

RAX=0x0000000000008000
RBX=0xffffffffi3ldaBod8
RCX=0xfffffe80413F6000
RDX=0xfffFffff8015ca%0
RSI=-0x0000000000000001
RDI=-0x00000000000003f8
RBP=0xfffffe8041200000
RSP=0xfffF30083821fff6o8

R8=0x00060000000083 e
R9=-0x000600060000083Fd
R1e=0x80800080000003e9
R11-0x00e00e8e+
R12=Bxffff{fff8lfadco
R13=-0x8000000001da7063
Rl14-0x60e0008002000001
R15=-8x8080008000000080

RIP=0xf{fff{ffaa1122e3

CURRENT :

CS=0x0018 DS=0x000e SS=0x0000
ES=0x0000 F5=0x0000 G5=0x8058
EXCEPTION:

C5=0x0018 SS5=-2x0000

CRE=0x0000000030016011 CR2=0xfffffedd13f6000
CR3=0x0000000001f 2000 CR4-0x8006000000000030
CR8=0x0000000000000000

RFLAGS=0x0060006000010083

STACK[ffff3000821fff68]:

Bx0008:
Ox06020:
Bxee40:
80068 :
Ox0080:

fHEfffff8el5a540 fff8eeelfblsse fiffff8e15a578 @o000BE0000RE81
fHEfffff8el5a570 fH{ffffa1e4547 eaceoacaeeveeaed fHfffffielsbaba
0000000000000001 0200082000000000 BE00BEREEERRBBRE T f8818ch3c
T ff{f8015a540 20000R00E00E0008 PEGEREEORERRERBA ffffff801831a0
goecoaeoooeseeld fHffffielsa540 eecoeccooeooeas

CALLSTACK:

OxfffHffff801122e3:
Oxftfffff+301e4547:
OxfffHffff8018c63c:
@xftffffffia1e31a8:

test privkstack fn + <Bx263> [Bx2aa]
run_tasks + <@x107> [0x2b6]
test_main + <Bxbc> [Bx13d]
kernel main + <8x38> [@xel]

800 e 6 0 S R TR 0BG o 0 R R 0BG O R 3 R 0 o R

CPU[@®] PANIC: #PF -RS-- at IP: @x1B:@xffffffff801122e3 SP: 0x00:0xffffB000821fff68

0 e e 0B T R Do 20 o b o e i e o o S e o e S e e o e ol i ke
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A Summary:
A The higher-level page table entries can be cached in pagingstructure caches whenever CPU decides to
do so
A When aliasing and/or collision in translation caches can occur:invalidation is a must
A Al J°Z C|E .«°XK ?2&5 3XN-3aX«T’ ™ ©°| X zJ° KXJ ° - «X

A Otherwise page walk can be optimized and bad things could happen



Broken INVLPG Instruction
on Intel Gracemont microarchitecture



Broken INVLPG instruction case

Around the same time, a FreeBSD received a bug report

261169 D Intel Alder Lake: data corruption with Read&Write files to FAT32 or UFS

For Intel Adler Lake P core + E core processor (i7-127@@T), copying files to FAT32
partition, the file corrutped (50%), but ZFS is fine. After disabling E core in the code
by restrict the max cpu number, this issue is gone. And No E core processor has no such
issue, like i7-124e8.

HW ENV:
CPU: Intel AlderLake 12th Gen 17-127@8T
Disk: NVME SSD

There are 3 methods to reproduce this issue:
1. Make FreeBSD 13 USB disk installer, install FreeBSD with UFS, and select install source
and ports, the txz package checking will be failed.

2. Boot to shell by USB disk installer, and mount a FAT32 parition (on SSD), and copy a
300MB file to the FAT32, compare the sha256 checksums for the source file and the dst
file, the checksum are different (50%). Or if there is a 30@MB file in FAT32 partition,
mount the parition, and for the first time check the sha256 value by running 'sha256
file.tgz', the checksum is wrong, but the second time, the checksum is correct.

3. Install FreeBSD 13 with ZFS, and it can work well. And boot into FreeBSD, disable swap,
and format the SWAP partition to FAT32. Do the testing as above.


https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=261169

Broken INVLPG instruction case

Some time later FreeBSD received a fix for the issue:
https://cqit.freebsd.org/src/commit/?id=cde70e312c3fde5b37a29beldacb7fde9a45b94a

amde64: for small cores, use (big hammer) INVPCID_CTXGLOB instead of INVLPG

A hypothetical CPU bug makes invalidation of global PTEs using INVLPG
in pcid mode unreliable, it seems. The workaround is applied for all
CPUs with small cores, since we do not know the scope of the issue, and
the right fix.


https://cgit.freebsd.org/src/commit/?id=cde70e312c3fde5b37a29be1dacb7fde9a45b94a

Broken INVLPG instruction case
--- a/sys/amd64/include/pmap.h
+++ b/sys/amd64/include/pmap.h
@@ -431,6 +431,8 @@ extern vm_offset_t virtual_end;
. extern vm_paddr_t dmaplimit;

What does the fix do? extern int pmap_pcid_enabled;
extern int invpcid_works;
+extern int pmap_pcid_invlpg_workaround;
+extern int pmap_pcid_invlpg_workaround_uena;

ReplaCeS”\lVLPG instruction usage with #define pmap_page_get_memattr(m) ((vm_memattr_t)(m)->md.pat_mode)
) _ #define pmap_page_is_write_mapped(m) (((m)->a.flags & PGA_WRITEABLE) != @)
INVPCID, because theINVLPG instruction @ -514,6 +516,24 @@ pmap_invalidate_cpu_mask(pmap_t pmap)

return (&pmap->pm_active);

apparently does not flush all global TLB )
+/*
entries when PCID is enabled! + * It seems that AlderLake+ small cores have some microarchitectural
+ * bug, which results in the INVLPG instruction failing to flush all
. . | + * global TLB entries when PCID is enabled. Work around it for now,
Desplte it should! + * by doing global invalidation on small cores instead of INVLPG.
+ */

+static __inline void
+pmap_invlpg(pmap_t pmap, vm_offset_t va)

+{

+ if (pmap == kernel_pmap && PCPU_GET(pcid_invlpg_workaround)) {
+ struct invpcid_descr d = { @ };

+

+ invpcid(&d, INVPCID_CTXGLOB);

+ } else {

+ invlpg(va);

+ ¥

+}

+

#endif /* _KERNEL */



Broken INVLPG instruction case

Then, Intel publishes an erratum for the affected processors:

Errata Details - 027 - 1D:682436 | 12th Generation Intel® Core ™ Processor

ADLO63

INVLPG May Invalidate Global TLB Entries Only For The Current PCID

Problem

The INVLPG instruction should invalidate any global TLB entries for the
specified linear address, regardless of PCID (Process-Context |dentifier). Due to
this erratum, INVLPG may fail to invalidate TLB entries for global pages with
PCIDs different from the current PCID value.

Note: On affected processors, the CPU may not use global TLB entries with
PCIDs different from the current PCID value. This erratum does not apply in
VMX non-root operation. It applies only when PCIDs are enabled and either
in VMX root operation or outside VMX operation.

Implication

When this erratum occurs, TLB entries may incorrectly remain valid, leading to
unpredictable system behavior, including unexpected exceptions. This erratum

does not apply to a guest operating system running in VMX non-root operation.

Workaround

It may be possible for BIOS to contain a workaround for this erratum.
Alternatively, this can be worked around by software using INVPCID type 2
instead of INVLPG.

Status

For the steppings affected, refer to the Summary Table of Changes.



https://edc.intel.com/content/www/us/en/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/682436/027/errata-details/

Broken INVLPG instruction case

A Al X °K-° ©°] N! X« Z
A Intel confirmed the incorrect behavior of INVLPG «~ © 3 AN° - «Ww MA° JK - Z
A Intel mentioned that the INVLPG instruction only fails to flush global TLB entries when PCID is enabled

and outside of the VMX virtualized environment!

A What was the natural conclusion?
A That this was the same bug we were having with PRIVATE KSTACKS
A Al X3 X CX3X @mA~©° o. . aJ«E N- «N TX«NX  Z



Broken INVLPG instruction case
A#A°W ©°| X3X CJ° JK - J N-A°KBX -Z ~ X3 -A° zMA°~ " 727
A The PCID being enabled or disabled did not play a role for the PRIVATE KSTACKS bug at alll

A And more importantly: unlike FreeBSD, we do not use global pages!

A After a careful investigation we were able to conclude that these were indeed two completely separate issues!
«9A °© [EX N-3«X3 NJ X " NX«J3 - 33X AK° «z

A One was just a counter-
| J3TGJI3X & N®-J3N| ©°©XNCAsJK a-T

AZ J«T -°3J2AX «XC
A The other was just a new hardware CPU bug!
° T XXa’Z

A NKJ ~ N °~ ©°AJ° -« C| X3X «-0 «z "¢l Jo



Conclusions

A Maintaining coherency between page tables in memory and CPU translation caches is complex
A Even if only correctness is kept in mind
A 1t becomes much harder when optimizing for performance
A Documentation is ambiguous, imprecise and lacks important details
A Probably on purpose: vendors do not want to reveal implementation details
A Sometimes, something that seems to be a CPU bug, is just a convoluted, counteintuitive and super rare corner
case scenario manifestation
A Other times, the convoluted, counter -intuitive and super rare corner case scenario manifestation is nothing but a
CPU bug

A No magic wand



Thank you
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