
Detection, Prevention, and

Containment:

A Study of grsecurity

Brad Spengler

http://www.grsecurity.net

spender@grsecurity.net

The Problem

The Problem

Bugs in software cause unexpected

results

Unexpected functionality can result from

errors in design, implementation, or

configuration

Bugs can often be wielded for malicious

purposes by an attacker

Problems With the Current Solution

Avoid / Identify / Fix

Current state of security is a never ending

rat race

Endless cycle of vulnerability discovery

and fixing

Problems With the Current Solution

Ultimate goal of today’s security – removal

of software bugs through auditing

Security utopia – greatest result, though

impossible to achieve

Problems With the Current Solution

Auditing is expensive, slow, and requires a

great deal of knowledge

Auditing provides no guarantees about the

security of the software

Auditing cannot be fully automated

EXAMPLE: format-string vulnerabilities

The (Attainable) Solution

The (Attainable) Solution

Detection

Prevention

Containment

Advantages of the (Attainable)

Solution

Inexpensive

Can be mostly automated

Works for known and unknown bugs

Allows administrators to focus more on

administration (checking logs..etc) instead

of rushing for the newest patch

Our solution:

grsecurity

Overview of grsecurity

Background on grsecurity

Started in February 2001

Initial release was for Linux 2.4.1

Originally a port of Openwall to Linux 2.4

Goals of grsecurity

Configuration-free operation

Complete protection against all forms of

address space modification bugs

Feature-rich ACL and auditing systems

Operation on multiple processor

architectures and Operating Systems

Features of grsecurity

A robust ACL system with an intelligent
userspace administration tool

Extensive auditing capabilities

Measures to stop the most common
methods of exploiting a system:

 Address space modification

 Races (specifically filesystem races, most
common of which are /tmp races)

 Breaking a chroot(2) jail

Features of grsecurity

Supports sysctl so that it can be included
with Linux distributions and allow the user
to modify the options to his/her liking

Netfilter module that drops connections to
unserved TCP and UDP ports

Many of the same randomness features as
OpenBSD

An enhanced implementation of Trusted
Path Execution (TPE)

Detection in grsecurity

Detection in grsecurity

Implemented in two forms

 Auditing

 Logging of real attacks

Inode and device numbers used wherever

possible

Parent process info logged

Auditing

Audited events include:

 Exec (with arguments)

 Chdir(2)

 Mount(2)/unmount(2)

 IPC (semaphore, message queue, shared

memory) creation and deletion

Auditing

 Signals: SIGSEGV, SIGABRT, SIGBUS,

SIGILL

 Failed forks

 Ptrace(2)

 Time changes (stime(2), settimeofday(2))

 Execs inside chroot(2)

 Denied capabilities

Prevention in grsecurity

Prevention in grsecurity

Prevention is implemented through PaX
and hardening certain sections of the
kernel

Hardened syscalls include:

 Chroot(2)

 Ptrace(2)

 Mmap(2)

 Link(2)/symlink(2)

 Sysctl(2)

Prevention in grsecurity - PaX

What is PaX?

 PaX implements non-executable VM pages
on architectures that do not support the non-
executable bit (currently only ia-32, more to
come)

 PaX makes use of hardware-supported non-
executable bits (still to be tested, but should
work for alpha, parisc, and ia-64)

 PaX provides full address space layout
randomization (ASLR) for ELF binaries

Prevention in grsecurity - PaX

How does PaX accomplish this?

 Include/asm-<arch>/processor.h is modified to

support executable and non-executable

pages (if they don’t already exist)

 Rest of kernel is modified to use the non-

executable pages, applied to ELF and a.out

binaries if they carry the required PaX flags

(enabled by default)

Prevention in grsecurity - PaX

 Non-executable pages are made supervisor in
the TLB; executable pages are left as user

If CPU is in user mode, access to the non-
executable pages causes a page-fault which PaX
handles

Makes up the core logic of how PaX works

Makes PaX ineffective against kernel overflows

 Mmap(2) and mprotect(2) restrictions/features
Disallows anonymous mappings with
PROT_EXEC present – stops one method of
arbitrary code execution (another method,
mapping a file with PROT_EXEC, is handled by
ACL system)

Prevention in grsecurity - PaX

Causes mmaps (applies to libraries) to be mapped

at random locations below 0x01000000 until it’s

full, then above 0x40000000

 Causes exploits to have to guess the library function

address

 Makes the address contain a NULL byte, which stops

ASCII shellcode from calling a library function

Keeps non-executable pages from being

mprotected to executable

No performance impact

Prevention in grsecurity - PaX

 Full Address Space Layout Randomization
(ASLR)

Randomizes the base of mmaps, stack, and
executable (if the binary is ET_DYN)

Makes the leftover methods of exploitation a guessing
game

With no-exec Without no-exec

Stack smashing Impossible Guess 16-bit

Heap overflow Impossible Guess 32-bit

Ret-to-libc Guess 32 or

48-bit

Guess 32 or 48-

bit

Prevention in grsecurity - PaX

0x0012d00 – 0x00391000 Libraries

0x0fd6b000 – 0x0fefc000 Executable

Executable 0x08048000 -0x08049000

Libraries 0x40000000 – 0x40168000

Stack 0xbfffe0000– 0xc0000000

0xbfff2000 – 0xbfffa000 Stack

PaX with Full ASLR Without PaX

0x40000000 – 0x50000000

0x08048000 – 0x0fd6b000

0x00fefc000 – 0x18048000

0xbfffa000 – 0xc0000000

0xbff00000 – bfff2000

2
5
6
M

B
2
5
6
M

B
1
M

B

Prevention in grsecurity - PaX

Full ASLR can only be bypassed in the case of
information leak. While there’s nothing that can be
done about software vulnerabilities that allow
information leaking without crashing, we’ve
implemented the following features to stop local
users from obtaining information about the random
base addresses:

 Ptrace(2) restrictions in ACL system

 Restricted /proc

For 64-bit architectures, the randomness provided
by full ASLR could be increased to 48/64/80 bits
(the amount the attacker has to overcome is
determined by the type of exploit)

Prevention in grsecurity - PaX

What’s in it for me?

 No more arbitrary code execution

 No more stack smashing, heap or bss

overflow exploitation

 No more return-to-libc exploitation

 (Soon) no more arbitrary execution flow

redirection

Prevention in grsecurity - PaX

What’s coming for this section of
grsecurity?

 New segmentation-based implementation of
non-executable pages with an insignificant
performance hit

 Increased stack base address randomness to
24 bits

 Binary instrumentation
Stops ret-to-libc by checkpointing execution flow
changes

Ability to handle other vulnerabilities (eg. Stack
based overflows, format string, info-leak)

Prevention in grsecurity

OpenBSD randomness features

 Random IP IDs

 Random RPC XIDs

 Random RPC privileged ports

 Random PIDs

Prevention in grsecurity

Random IP IDs

 Uses Niels Provos’ random IP ID generation

function ported to Linux

Little entropy use

Values are not reused quickly

 Useful for preventing OS fingerprinting and

spoofed scans

Prevention in grsecurity

Random RPC XIDs

 Uses same random IP ID code

 Useful for preventing RPC connection

hijacking

Random PIDs

 Uses same random IP ID code

 Properties of returned values make the

function almost always return an unused PID

even on heavily loaded servers

Prevention in grsecurity

 Prevents filesystem races since getpid() is

sometimes used as part of a temporary

filename

 Adds additional randomness to programs that

use getpid(2) for srandom(3) seeding

Prevention in grsecurity

Stealth netfilter module

 Based on the fact that OS fingerprinting relies

greatly on the packets sent in reply to those

sent to unserved TCP or UDP ports

 Matches unserved ports dynamically, so it can

be used in shell-server environments

 Slows down blocking port-scanners

Prevention in grsecurity

Problems with chroot(2)

 Easy to use it insecurely

 Generally only filesystem-related functions

care if a process is chrooted

 Easy for a root user in chroot to break out

Prevention in grsecurity

How we strengthen chroot(2):

 Make syscalls unrelated to the filesystem

chroot-aware

Deny double-chroots, pivot_root(2)

Restrict signals outside of chroot

Deny fchdir(2) outside of chroot

Deny mounting

 Enforce chdir(“/”) upon chroot

 Lower capabilities upon chroot

Containment in grsecurity

Containment in grsecurity

Trusted Path Execution (TPE)

 Keeps users from executing untrusted

binaries (those not in root-owned non-world

writable directories)

 Hardened against evasion

Silent removal of glibc environment variables that

allow arbitrary code execution (eg. LD_PRELOAD)

TPE checks implemented in mmap(2) (stops

/lib/ld.so <executable> evasion)

Containment in grsecurity

Grsecurity’s ACL system

 Process-based : Allowed for a large reduction
in code base

 ACL parsing handled via userspace, interacts
with kernel via a /proc entry

Include directive

ACL analysis
 $PATH

 /etc/ld.so.conf

 Auto-add libraries for ELF executables

 /etc/lilo.conf

Containment in grsecurity

Uses LEX/YACC

Sends data to kernel in ready-to-use structures –

further reduces necessary kernel code size

 Enable, disable, and administrator modes

 Hidden and protected processes

 Read, write, append and execute modes for

file objects

 Inherit and hidden flags for file objects

Containment in grsecurity

 Capability support (including inheritance)

 Hardened against ACL evasion and privilege
leaking

Ptrace restriction – user can only ptrace a process
if the default ACL allows writing to it

Glibc environment variable handling
 Performs correct handling, not just a denied exec if LD_

is found

 Checks each path in glibc environment to see if the
default ACL allows writing to it; if so, deny the exec and
log pathname and environment variable used

Applies executable restrictions in mmap(2), not just
execve

Containment in grsecurity

 Human readable configuration files

 Insignificant performance impact due to

efficient searching algorithms (hash tables ==

O(1))

Containment in grsecurity

What’s coming for the ACL system?

 Redesign to become more modular and allow
quicker implementation of new features

 Intelligent learning mode resulting in a least-
privilege system with little or no configuration
necessary

 Support of fine-grained resource restrictions
and something similar to nergal’s segvguard

 Time-based ACLs

 Merging of GID-based grsecurity features

 Role-Based Access Control (RBAC)

Containment in grsecurity

 Domain-based authentication support

Performance

Performance of ACL system

Completed 150 runs of 16 dbench
processes

Average throughput with ACL system was
larger than a clean kernel

Standard deviation was 5MB/s, which was
larger than the difference of throughput

RESULT: The ACL system causes no
noticeable performance hit on filesystem
access

Performance of ACL system

Results of kernel compile benchmark:

 Total time with ACL system – 265.86 seconds

 Total time w/o ACL system – 264.94 seconds

 .4% performance hit

Performance hit only due to execs in

compiling and making – search is called

twice, acl label is copied, acl label is set,

checks are performed on the environment

Performance with PaX

Memory load latency microbenchmarks

MySQL benchmarks (real life example)

Test system:

 Dual AMD XP 1600+

 512MB PC2100 ECC DDR registered RAM

 266mhz FSB

 80GB ATA100 5400RPM HD

Performance with PaX
2.4.18 memory load latency

0

100

200

300

400

500

600

700

800

900

1000

0.0001 0.001 0.01 0.1 1 10 100 1000

Array Size (MB)

L
a
te

n
c
y
 (

n
s
)

Stride 16

Stride 32

Stride 64

Stride 128

Stride 256

Stride 512

Stride 1024

Stride 2048

Stride 4096

Performance with PaX
grsecurity w / PaX memory load latency

0

100

200

300

400

500

600

700

800

900

1000

0.0001 0.001 0.01 0.1 1 10 100 1000

Array Size (MB)

L
a
te

n
c
y
 (

n
s
)

Stride 16

Stride 32

Stride 64

Stride 128

Stride 256

Stride 512

Stride 1024

Stride 2048

Stride 4096

Performance with PaX

Athlons encounter less performance hit
partially due to their 256 entry DTLB (4KB
page x 256 = 1MB)

PaX starts showing its performance impact
when the DTLB is full and expired entries
are replaced

Performance with PaX can only be
determined by the size and type of
memory accesses performed by an
application

Performance with PaX

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

%
 o

f
C

P
U

 t
im

e

alter-table ATIS big-tables connect create insert select

Linux 2.4.18 MySQL benchmark

System

User

Performance with PaX

0%

20%

40%

60%

80%

100%

%
 o

f
C

P
U

 t
im

e

alter-table ATIS big-tables connect create insert select

grsecurity w / PaX MySQL benchmark

System

User

Performance with PaX

1 10 100 1000 10000

Wallclock time (s)

alter-table

ATIS

big-tables

connect

create

insert

select

grsecurity MySQL benchmark

grsecurity w / PaX

Clean 2.4.18

Performance with PaX

A result weighted according to an actual

system’s load shows that for MySQL, PaX

caused an overall performance hit of 13%

Since the memory access patterns of each

test were different, the performance hits

for each test ranged from 3% - 20%

For More Information…

grsecurity’s ACL documentation:

http://www.grsecurity.net/gracldoc.htm

PaX

http://pageexec.virtualave.net

THANKS

PaX Team

Tim Yardley

Michael Dalton - grsecurity

