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• Why do we need the branch prediction unit (BPU)?

• Backend of modern superscalar and out-of-order CPUs can have many instructions “in-flight”

• Frontend must keep up supplying instructions to the Backend

• Any feedback from Backend to Frontend will stall the CPU

• Must be avoided

• Some definitive information available only in the Backend

• Frontend must predict the likely outcome upfront

• Correct prediction ➔ performance win

• Misprediction ➔ penalty, Frontend re-steer when Backend detects

• The better (more accurate) prediction rate, the better performance (fewer bubbles)

• Frontend needs to know where to find next instructions to fetch and decode

• Easy for sequential execution ➔ next instruction

• Problematic upon control flow change (branch)

• Two questions:

• IF – taken or not taken

• Where-to – address of the next instruction

Branch predictors - purpose
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• Prediction based on the actual branch instruction and 

a pre-defined heuristic:

• Type of branch

• Conditional

• Unconditional

• Branch direction

• Forward

• Backward

• Examples:

• Unconditional branches are always taken

• Backward branches taken (loops accuracy)

• Forward branches not taken

• Unconditional branches are easier to predict than conditional
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Branch predictors - design and building blocks

• Branch Prediction Unit (BPU)

• Many different designs and categories

• Static vs Dynamic

• One-Level vs Two-level

• Local vs Global

• Adaptive

• Agree

• Hybrid

• Neural (Machine Learning)

• Perceptron-based (AMD Zen2)

• Prediction is based on a two-dimensional table of 2-

bit saturation counters (Branch/Pattern History 

Table) indexed with branch history register
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• Local vs Global

• Adaptive

• Agree

• Hybrid

• Neural (Machine Learning)

• Perceptron-based (AMD Zen2)

• Branch History Table is indexed using a distinct 

branch history register for each encountered 

conditional branch

• Branch History Table is indexed using a shared 

(global) branch history register for all encountered 

conditional branches

• Correlation between different branches is 

considered

• May harm prediction accuracy when too many 

branches are not correlated



Branch predictors - design and building blocks

• Branch Prediction Unit (BPU)

• Many different designs and categories

• Static vs Dynamic

• One-Level vs Two-level

• Local vs Global

• Adaptive

• Agree

• Hybrid

• Neural (Machine Learning)

• Perceptron-based (AMD Zen2)

• gshare – Two-level adaptive predictor with global 

history buffer

Taken / Not Taken

SNTST WT WNT

SNTST WT WNT

SNTST WT

SNTST WT WNT

WNT

SNTST WT WNT
Branch Direction Prediction

Branch History Table (BHT)

T T N T N N T N T N

Global History Register (GHR)

Program Counter



Branch predictors - design and building blocks

• Branch Prediction Unit (BPU)

• Many different designs and categories

• Static vs Dynamic

• One-Level vs Two-level

• Local vs Global

• Adaptive

• Agree

• Hybrid

• Neural (Machine Learning)

• Perceptron-based (AMD Zen2)

• Consists of multiple different branch prediction 

mechanisms

• Prediction is based on:

• Prediction mechanism that has had highest 

accuracy in the past

• Combined output of all implemented 

prediction mechanisms
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• So far, we have been implicitly focusing on

direct conditional branch predictions

• Taken / Not taken

• Question: IF branch at all

• What about other branch types?

• Do they need a branch predictor too?

• Yes, they do!

• Question: Where-to

• Another important BPU component:

• Branch Target Buffer (BTB)

Branch predictors - design and building blocks

Branch Target Address 1

Branch Target Address 2

Branch Target Address 3

Branch Target Address N

...

Branch Target Buffer (BTB)

Target Address Prediction



• Predicts address of next instructions after the control

flow changes because of a branch

• Turns out: ALL branch types need BTB!

• Frontend fetches and decodes, but does not

execute instructions

• Frontend needs to know where to fetch next

instructions from upon a branch

• It must not wait for Backend

• Performance!

• Hence, BPU is a Frontend’s component and

leverages BTB to steer Frontend upon branches

Branch predictors – branch target buffer

Branch Target Address 1

Branch Target Address 2

Branch Target Address 3

Branch Target Address N

...

Branch Target Buffer (BTB)

Target Address Prediction



• Analyzing branch instructions addressing is backend’s job

• Where-To problem:

• Direct conditional branches:

• Not taken ➔ next instruction

• easy

• Taken ➔ where-to?

• backward, forward, not easy

• Direct unconditional branches:

• Always taken ➔ where?

• backward, forward, not easy

• Indirect unconditional branches:

• Always taken ➔ where?

• backward, forward, not easy

• Target address may change at runtime, not static

• static prediction will not do

• BTB is crucial for performance

Branch predictors – branch target buffer

Branch Target Address 1

Branch Target Address 2

Branch Target Address 3

Branch Target Address N

...

Branch Target Buffer (BTB)

Target Address Prediction
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Hybrid branch predictor – building blocks
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Branch predictors – different types of branches

• Direct

• Conditional

• Jumps

• Taken

• Not Taken

• Unconditional

• Jumps

• Calls

• Indirect

• Unconditional

• Jumps

• Calls

• Function return

• x86: Jcc $address

• Control flow change to the specified $address,

when condition is met

• Condition cc is based on the state of the status 

flags (EFLAGS register)

• JA – jump if above

• Status flags: CF=0 and ZF=0

• JB – jump if below

• Status flags: CF=1

• JE – jump if equal

• Status flags: ZF=1

• JNE – jump if not equal

• Status flags: ZF=0



Branch predictors – different types of branches

• Direct

• Conditional

• Jumps

• Taken

• Not Taken

• Unconditional

• Jumps

• Calls

• Indirect

• Unconditional

• Jumps

• Calls

• Function return

• Example (Taken)

xor %rdi, %rdi ; set ZF=1

test %rdi, %rdi ; set ZF=1

je END_LABEL ; if ZF==1 goto END_LABEL

mov (%rsi), %rax ; memory load

END_LABEL:

mov %rax, (%rsi) ; memory store

a = 0

if (a == 0)

*addr = %rax

else

%rax = *addr



Branch predictors – different types of branches

• Direct

• Conditional

• Jumps

• Taken

• Not Taken

• Unconditional

• Jumps

• Calls

• Indirect

• Unconditional

• Jumps

• Calls

• Function return

• Example (Not Taken)

mov $1, %rdi

test %rdi, %rdi ; set ZF=0

je END_LABEL ; if ZF==1 goto END_LABEL

mov (%rsi), %rax ; memory load

END_LABEL:

mov %rax, (%rsi) ; memory store

a = 1

if (a == 0)

*addr = %rax

else

%rax = *addr



Branch predictors – different types of branches

• Direct

• Conditional

• Jumps

• Taken

• Not Taken

• Unconditional

• Jumps

• Calls

• Indirect

• Unconditional

• Jumps

• Calls

• Function return

• x86: JMP $address

• Unconditional control flow change to the 

specified $address, without return

• Direct – target address static

• Part of the instruction

• Used by compilers to implement:

• Loops

• Tail calls

• Sharing common code blocks

• Error handling code

• …

• Other uses:

• RAP – jumping over meta-data in code

• Live patching

• …



Branch predictors – different types of branches

• Direct

• Conditional

• Jumps

• Taken

• Not Taken

• Unconditional

• Jumps

• Calls

• Indirect

• Unconditional

• Jumps

• Calls

• Function return

• x86: CALL $address

• Unconditional control flow change to the specified 

$address with return

• Direct – target address static

• Part of the instruction

• CALL instruction ➔ push %rip; jmp $address

• Execution flow is expected to resume at the CALL 

following instruction eventually

• Used by compilers to implement:

• Procedure calls

• Recursive calls

• …

• Other uses:

• __x86.get_pc_thunk.* – position independent 

code execution helper on i386/i686

• …



Branch predictors – different types of branches

• Direct

• Conditional

• Jumps

• Taken

• Not Taken

• Unconditional

• Jumps

• Calls

• Indirect

• Unconditional

• Jumps

• Calls

• Function return

• x86: JMP reg (or [mem])

• Unconditional control flow change to the dynamic 

address specified via register or memory 

dereference, without return

• Indirect – target address dynamic

• May change at runtime

• Specified by register or memory location

• i386: absolute address

• x64: pc-relative offset

• Used by compilers to implement:

• Tail calls

• Jump tables

• Switch-case

• Virtual function tables (C++)

• Multiway conditional branches



Branch predictors – different types of branches

• Direct

• Conditional

• Jumps

• Taken

• Not Taken

• Unconditional

• Jumps

• Calls

• Indirect

• Unconditional

• Jumps

• Calls

• Function return

• x86: CALL reg (or [mem])

• Unconditional control flow change to the 

dynamic address specified via register or 

memory dereference, with return

• Indirect – target address dynamic

• May change at runtime

• Specified by register or memory location

• i386: absolute address

• x64: pc-relative offset

• Used by compilers to implement:

• Function pointers

• Virtual functions (C++)

• Position independent code



Branch predictors – different types of branches

• Direct

• Conditional

• Jumps

• Taken

• Not Taken

• Unconditional

• Jumps

• Calls

• Indirect

• Unconditional

• Jumps

• Calls

• Function return

• x86: RET

• Unconditional control flow change to the 

$address located on stack

• Indirect – target address dynamic

• May change at runtime

• Stored on stack upon function call

• Used by compilers to implement:

• Function returns

• Retpoline

• Does not use BTB, but Return Stack Buffer 

(RSB) aka Return Address Stack (RAS)



• Straight-Line Speculation term was coined by Arm

• result of Google SafeSide project research - CVE-2020-13844

• Arm described SLS as a speculative execution past an unconditional change in the control flow:

"Straight-line speculation would involve the processor speculatively executing the next

instructions linearly in memory past the unconditional change in control flow“

• Initially observed on indirect unconditional branches on Arm CPUs

• Shortly after, the SLS was also observed on “some x86 CPUs”

• Also, on indirect unconditional branches

• However:

• SLS had to have been observed on x86 CPUs prior to Arm coining the term

• Appearance of traps after RET instructions:

• ~2018: Microsoft Windows

• ~2019: grsecurity®

Straight-Line Speculation (SLS)



• Types of SLS

• Indirect

• Unconditional

• Jump and Call

• JMP/CALL reg

• JMP/CALL [mem]

• Function return

• RET

Straight-Line Speculation (SLS)

                                 

                         

                                    

                         

                     

                         



• Types of SLS

• Indirect

• Unconditional

• Jump and Call

• JMP/CALL reg

• JMP/CALL [mem]

• Function return

• RET

• What about direct branches?

Straight-Line Speculation (SLS)



• AMD x86 CPUs (Zen1 and Zen2 microarchitectures)

• All direct unconditional branch instructions experience SLS vulnerability too!

• JMP $address

• CALL $address

• Branch direction does not matter

• Forward and backward branches suffer from the SLS

• It is possible to trigger the SLS between two co-located hyper-threads

• AMD x86 CPU (Zen3 microarchitecture)

• SLS on direct unconditional branches seems to be fixed

• Big design upgrade of the branch predictor unit

• Intentional or accidental?

CVE-2021-26341 - Direct unconditional branch SLS



• SLS code example

CVE-2021-26341 - Direct unconditional branch SLS

; memory address 0 whose access latency allows to observe the speculative execution

0. mov CACHE_LINE_0_ADDR, %rsi

; memory address 1 whose access latency allows to observe the speculative execution

1. mov CACHE_LINE_1_ADDR, %rbx

; flush both cache lines out of cache hierarchy to get a clean state

2. clflush (%rsi)

3. clflush (%rbx)

4. mfence

5. jmp END_LABEL

; memory load to the flushed cache line; it never executes architecturally

6. mov (%rsi / %rbx), %rax

7. END_LABEL:

8. measure CACHE_LINE_0/1_ADDR access time



• Why would a modern CPU speculate past a direct unconditional branch?

• After all:

• Its target address is static!

• And encoded as part of the instruction!

• There is no latency involved

• Its unconditional – no need to evaluate conditions

Straight-Line Speculation (SLS)



• Why would a modern CPU speculate past a direct unconditional branch?

• After all:

• Its target address is static!

• And encoded as part of the instruction!

• There is no latency involved

• Its unconditional – no need to evaluate conditions

• Let’s see why…

Straight-Line Speculation (SLS)



Straight-Line Speculation (SLS) - mechanics
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• If there is no entry in the BTB (or Return Address Stack (RAS) for RET instructions)

• the branch will be mispredicted and SLS might occur

• Any branch type!

• What does it mean?

• we can easily and almost 100% reliably make affected AMD CPUs mispredict any branch …

• Direct or indirect

• Conditional or unconditional

• … and trigger SLS past it.

• How?

• We need to make sure the corresponding BTB entry is not present

• Simplest way: flushing entire BTB

CVE-2021-26341 - Direct unconditional branch SLS



CVE-2021-26341 - Direct unconditional branch SLS

• Flushing entire BTB

• Execute a large enough number of the consecutive branches

• Each will take at least one entry in the BTB

• BTB entries can hold up to two branches within the same 64-

byte instruction block

• Provided the first branch is a conditional branch

• Solution

• Place two unconditional branches within a single cache-line

• Upon execution at least one entry of the BTB will be 

taken

• Repeat this code construct a NUMBER of times

• Entire BTB overwritten if the NUMBER is equal to or 

greater than the number of entries of the given BTB

.macro flush_btb NUMBER

; start at a cache-line size aligned address

.align 64

; repeat the code between .rept and .endr

; directives a NUMBER of times

.rept \NUMBER

jmp 1f   ; first unconditional jump

.rept 30 ; half-cache-line-size padding

nop

.endr

1: jmp 2f   ; second unconditional jump

.rept 29 ; full cache-line-size padding

nop

.endr

2: nop

.endr

.endm



• Speculation window

• up to 8 simple and short (up to 16 bytes) x86 instructions can be speculatively executed

• in practice: 4-5 short x86 instructions that do not compete for execution units

• up to 2 memory loads can be executed speculatively

• the loads (even pre-cached) cannot provide data to the following uops in time

• the loads do get scheduled and can leave traces in cache hierarchy

• Limitations

• constructing a full Spectre v1 gadget is not possible with this type of SLS

• Secret data needs to be available in GPR (registers) for the SLS gadget

• or…

CVE-2021-26341 - Direct unconditional branch SLS



• Store-To-Load-Forwarding (STLF)

• Forwarding data of a completed (but not yet retired) stores to the later loads

• Stores are buffered in the Store Queue (WAW and WAR dependencies)

• Later loads must get fresh data either from the Store Queue (if fresh) or memory

• Memory loads executed under SLS receive data from the earlier stores to the same address

• STLF enables speculative loads under SLS to execute fast

• Such loads do provide data to their dependent uops

• STLF requirements

• Earlier store contains all the load’s bytes (cannot load more)

• CPU uses address bits 11:0 to determine STLF eligibility

• Same address space and ideally same registers, closely grouped together

CVE-2021-26341 - Direct unconditional branch SLS



• SLS gadget example

CVE-2021-26341 - Direct unconditional branch SLS

asm goto (

"mov $0x4141414141414141, %%rbx\n“

"mov %%rbx, (%0)\n“

"sfence\n“

"lfence\n“

".align 64\n“

"jmp %l[end]\n“

"mov (%0), %%rbx\n“

"and %1, %%rbx\n“

"add %2, %%rbx\n“

"mov (%%rbx), %%ebx\n“

:: "r" (&path), "r" (1UL << bufsiz), "r" (buf)

: "rbx", "memory“

: end);

end:



• Types of SLS

• Indirect

• Unconditional

• Jump and Call

• JMP/CALL reg

• JMP/CALL [mem]

• Function return

• RET

• Direct

• Unconditional

• Jump and Call

• JMP/CALL $address

Straight-Line Speculation (SLS)
                                 

                         

                                    

                         

                     

                         

                     

                         



• Types of SLS

• Indirect

• Unconditional

• Jump and Call

• JMP/CALL reg

• JMP/CALL [mem]

• Function return

• RET

• Direct

• Unconditional

• Jump and Call

• JMP/CALL $address

• What about direct conditional branches?

Straight-Line Speculation (SLS)



• Both paths of conditional branches (taken or not taken) are architecturally legitimate

• Hence, there is no direct conditional branch SLS

• Rather, we speak of a branch fall-through speculation

• If a conditional branch is architecturally taken

• It could be speculatively executed as not taken ➔ mispredicted

• Typical Spectre v1 situation

Speculation of conditional branches



• Spectre v1 and conditional branches relation

• A common Spectre v1 gadget

• Out-of-bound array access

• Speculative bypass of a bound check

• Bound check memory access latency

• Most speculation blocking mitigation target “array-based” Spectre v1 gadgets

• But, is Spectre v1 really limited to that?

Spectre v1: a fall-thru speculation of conditional branches



• Flush BTB to trigger a fall-thru speculation for a conditional branch

• No condition evaluation considerations necessary

• No memory access (or any other) latency required

• Easy to make any conditional branch mispredict

• Even a trivial one

• Speculative type confusion

• No need for array out-of-bound

• Works also on AMD Zen3!

• Neither this nor direct unconditional branch SLS affects Intel

Spectre v1: a fall-thru speculation of conditional branches



• Gadget example

Spectre v1: a fall-thru speculation of conditional branches

; memory address whose access latency allows to observe the mispredictions

0. mov $CACHE_LINE_ADDR, %rsi

; flush the cache line out of cache hierarchy to get a clean state

1. clflush (%rsi)

2. mfence

3. xor %rdi, %rdi ; set ZF=1

4. jz END_LABEL   ; if ZF==1 goto END_LABEL

; memory load to the flushed cache line; it never executes architecturally

5. mov (%rsi), %rax

6. END_LABEL:

7. measure CACHE_LINE_ADDR access time



• Speculation window

• Noticeably shorter than “regular” Spectre v1 speculation window

• up to 8 simple and short (up to 16 bytes) x86 instructions can be speculatively executed

• in practice: ~5-7 short x86 instructions that do not compete for execution units

• up to 2 memory loads can be executed speculatively

• the loads (must be pre-cached) do provide data to the following uops in time

• Constructing a full Spectre v1 gadget is possible

• Secret data can be anywhere in memory

• Limitations

• Shorter speculation window ➔ fewer instructions

• More difficult to build cache oracle

Spectre v1: a fall-thru speculation of conditional branches



• Here we discuss SLS mitigation for the following branches:

• Direct unconditional jump

• Indirect unconditional jump

• Function return RET

• These three cases are easy to mitigate

• Just put a speculative execution barrier (i.e., serializing or ordering instruction) after

• The shorter the instruction the better

• Never gets executed architecturally

• SLS mitigation for direct and indirect unconditional call is not that simple

• At some point control flow resumes execution at an instruction following the call

• The speculative execution barrier gets executed architecturally

• Must not have architectural “side-effects”

SLS Mitigations



SLS Mitigations

• Mitigation for

• Direct unconditional jump

• Indirect unconditional jump

• Function return RET

INT3 – single byte opcode (0xCC)
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SLS Mitigations

• Mitigation for

• Direct unconditional call

• Indirect unconditional call

LFENCE - Not good for performance!

XOR EAX, EAX – complicated!

• XOR EAX, EAX

• Based on compiler post-call behavior 

assumptions

• Callee-clobbered registers won’t be used 

without re-write

• Callee-preserved registers are preserved 

– invariant

• Only return value register (eax) might be 

abused

• Clearing return value register before the call

• Forces eax value to 0 during SLS

• No arbitrary content of eax



SLS Mitigations

• Mitigation for

• Direct unconditional call

• Indirect unconditional call

LFENCE - Not good for performance!

XOR EAX, EAX – complicated!

• XOR EAX, EAX

• Complicated:

• Based on compiler assumptions that 

might not always hold

• Compiler implementation dependent

• Some calling convention ABIs use eax as 

function input parameter

• Fastcall / regparm(3)

• Variadic functions may use eax as 

parameter

• Small structures returned via eax + edx

• What to do with:

• CALL eax
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