

GRSECURITY

ACL DOCUMENTATION

V1.5

Brad Spengler

http://www.grsecurity.net

spender@grsecurity.net

April 1, 2003

TABLE OF CONTENTS

I. Introduction

A. What Is an ACL System?

B. Why Use an ACL System?

C. Features

II. Installation

A. Obtaining grsecurity and gradm

B. Installing grsecurity

C. Installing gradm

III. Configuration and Specification

A. ACL Structure

B. Inheritance

C. Flow of Matches

D. Resource restrictions

E. IP ACLs

F. PaX flags and caveats

G. Object globbing

H. Miscellaneous notes

I. ACL Recommendations

J. Sample ACLs

IV. Using gradm and the Learning Mode

V. FAQ

A. Where Do I Look for Additional Information?

B. I’ve found a Bug, What Do I Do?

C. Program “X” Isn’t Working since I Enabled the ACL system, What Gives?

D. How Can I Help?

VI. Appendix

A. Capability Names and Descriptions

I. Introduction

A. What Is an ACL System?

An ACL (Access Control List) system is software that provides fine–grained access

control for your computer.

B. Why USE an ACL System?

You need an ACL system if you want to restrict access to files, capabilities, resources, or

sockets to ALL users, including root. This is what is called a Mandatory Access Control

(MAC) model. The other features of grsecurity are only effective at fending off attackers

trying to gain root, so the ACL system is used to fill in this gap.

Least privilege can be granted to processes, which, in turn, forces attackers to

reevaluate their methods of attack, since gaining access to the root account no longer

means that they have full access to the system. Access can be explicitly granted to

processes that need it, in such a way that root acts as any other user.

Though grsecurity and its ACL system are in no means perfect security, they greatly

increase the difficulty of successfully compromising the system.

C. Features

What features does our ACL system offer?

• Process–based ACLs (soon: role-based)

• Process–based resource restrictions (soon: role-based as well)

• Process–based IP ACLs (soon: role-based as well)

• Resource to prevent bruteforce attacking of processes

• Full–featured intelligent learning mode that produces least-privilege ACLs

with no configuration

• Full–featured fine–grained auditing

• Configurable process accounting

• Configurable log suppression

• Human–readable configuration files

• Secure and intelligent policy enforcement

• Supports hide, protect, and override subject flags

• Supports the PaX flags

• Shared memory protection

• Integrated local attack response on all alerts

• Supports read, write, append, execute, view, and read-only ptrace object

permissions

• Subject flag that ensures a process can never execute trojaned code

• ACLs can be placed on non-existent files/processes

• ACL regeneration on subjects and objects

• Administrative mode to use for regular sysadmin tasks

• ACL system is resealed up admin logout

• /proc/pid file descriptor/memory restriction

• Globbing support on ACL objects

• Support for including additional ACL configurations via an include

directive. The argument can be a directory or a file

• Not filesystem dependent

• Scales well: supports as many ACLs as memory can handle

• No runtime memory allocation

• SMP safe

• O(1) time efficiency for most operations

• Administrator mode

• ACL inheritance

• Option to hide kernel processes

II. Installation

A. Obtaining grsecurity and gradm

Grsecurity and gradm are both available at http://www.grsecurity.net.

The download page features the current stable and development versions.

The current source for grsecurity and gradm can be viewed at http://cvsweb.grsecurity.

net/.

Changelogs are updated nightly, and are available at http://www.grsecurity.net/cvs–

changelog and http://www.grsecurity.net/cvs–gradm–changelog for grsecurity and

gradm, respectively.

B. Installing grsecurity

After downloading the patch for grsecurity place it in /usr/src. Download the version

of the Linux kernel mentioned in the name of the patch (i.e. If the patch name is

grsecurity-1.9.9f-2.4.20.patch, download the 2.4.20 kernel) and also place it

in /usr/src.

tar -zxf linux-<version>.tar.gz

or, if you downloaded a bzipped kernel:

tar -jxf linux-<version>.tar.bz2

patch -p0 < grsecurity-<version>.patch

cd linux

make menuconfig

or:

make xconfig

make dep bzImage modules modules_install install

Be sure to update your bootloader if make install doesn’t.

C. Installing gradm

After downloading gradm:

tar -zxf gradm-<version>.tar.gz

cd gradm

make

make install

It will prompt you for the password to be used for administrating the ACL system.

Choose a long password, but one that you will remember (especially if you start gradm

from an initscript). DO NOT use the same password as your root password.

III. Configuration and Specification

A. ACL Structure

ACLs for grsecurity are made up of subjects and objects and are implemented with

processes, being subjects and files, capabilities, resources, and IP ACLs, being objects.

The location of the main ACL file is /etc/grsec/acl.

The structure of an ACL is as follows:

<path of subject process> <optional subject modes> {

 <file object> <optional object modes>

 [+|-]<capability>

 <resource name> <soft limit> <hard limit>

 connect {

 <ip>/<netmask>:<low port>–<high port> <type> <proto>

 }

 bind {

 <ip>/<netmask>:<low port>–<high port> <type> <proto>

 }
}

Some rules for our ACLs:

• All paths must be absolute paths, i.e. /bin/sh as opposed to sh. A

newer feature of the ACL system is globbing support, which will be discussed

later.

• Omitting a mode parameter for an object allows FIND access to the

object. FIND access encompasses stat(), chdir(), filldir(), etc, but does not allow

any other access to the object.

• To include additional ACL files, simply use include <pathname>. This

must be done outside of any subject ACL definition. For example, if you had

several ACL configurations in the directory /etc/grsec/acls, and you wanted

to include them all, you could use:

include </etc/grsec/acls>

• Commenting is supported in ACL configurations at any point in the line.

Comments start with the “#“ character, and end at the end of the line.

• Neither subject nor object paths need to be a specific binary or file, they

can also be directories. You’ll see why this is important when we discuss ACL

inheritance later on in this document.

• You MUST have a subject ACL for /. This is also referred to as the default

ACL. Gradm will tell you if you do not have a default ACL.

• For all subjects with override set as a subject mode, an object ACL must be

present for /.

• CAP_ALL is not a real capability, but was coded into gradm to represent

all capabilities. Therefore to denote dropping of all capabilities, but

CAP_SETUID, -CAP_ALL and +CAP_SETUID would be used.

• Though this will be commented on in more depth in section III.C, access to

a file is granted only when the file system’s Discretionary Access Control (DAC)

model grants permission, as well as grsecurity’s ACL system. Therefore, the two

rules:

/root h

/root/secretscript.sh rx

are completely valid.

Modes and what they represent:

Subject modes:

• h This process is hidden and only viewable by processes with the v

mode.

• v This process can view hidden processes.

• p This process is protected; it can only be killed by processes with

the k mode, or by processes within the same subject.

• k This process can kill protected processes.

• l Enables learning mode for this process.

• d Protect the /proc/<pid>/fd and /proc/<pid>/mem entries for

processes in this subject.

• b Enable process accounting for processes in this subject.

• P DISABLES the PAGEEXEC feature of PaX on this subject

• S DISABLES the SEGMEXEC feature of PaX on this subject

• M DISABLES the MPROTECT feature of PaX on this subject

• R DISABLES the RANDMMAP feature of PaX on this subject

• G ENABLES the EMUTRAMP feature of PaX on this subject

• X ENABLES the RANDEXEC feature of PaX on this subject

• O Override the additional mmap() and ptrace() restrictions for this

subject

• A Protect the shared memory of this subject. No other processes

but processes contained within this subject may access the shared memory

of this subject.

• K When processes belonging to this subject generate an alert, kill

the process

• C When processes belonging to this subject generate an alert, kill

the process and all processes belonging to the IP of the attacker (if there

was an IP attached to the process)

• T Ensures this process can never execute any trojaned code

• o Override ACL inheritance for this process. This will be discussed

later in section III.B.

Object modes:

• r This object can be opened for reading.

• w This object can be opened for writing or appending.

• x This object can be executed (or mmap’d with PROT_EXEC into a

task).

• a This object can be opened for appending.

• h This object is hidden.

• t This object can be ptraced, but cannot modify the running task.

This is referred to as a ‘read-only ptrace’.

• s Logs will be suppressed for denied access to this object.

• i This mode only applies to binaries. When the object is executed, it

inherits the ACL of the subject in which it was contained. This will be

explained in section III.B.

• R Audit successful reads to this object

• W Audit successful writes to this object

• X Audit successful execs of this object

• A Audit successful appends to this object

• F Audit successful finds of this object

• I Audit successful ACL inherits of this object

B. Inheritance

There are two kinds of inheritance that we will discuss regarding the ACL system. The first

pertains to the configuration file, and the second pertains to how ACLs are handled in the

kernel.

Grsecurity implements a feature called “inheritance” in its ACL configuration. If you are

familiar with C++, the idea won’t be new to you, as it is similar to class inheritance.

Inheritance applies to all ACLs that do not have “o” in the subject mode. There is a simple

set of rules that govern inheritance in the ACL configuration. Note that the notion of

“parent ACLs” will be explained in the next section.

If an object in the parent ACL does not exist in the current ACL, we are calculating

inheritance for, add the object from the parent ACL into the current ACL.

Examples of inheritance: An ACL configuration such as:

/ {

 / rwx

 /etc rx

 /usr/bin rx

 /tmp rw
}

/usr/bin/mailman {

 /tmp rwx
}

would expand to the following, once inheritance was calculated:

/ {

 / rwx

 /etc rx

 /usr/bin rx

 /tmp rw

}

/usr/bin/mailman {

 / rwx

 /etc rx

 /usr/bin rx

 /tmp rwx
}

As you can see, /usr/bin/mailman now has the objects of /, and the declaration of an

ACL for /tmp in /usr/bin/mailman overrode the declarations in the parent ACL.

The algorithm used in grsecurity does not simply calculate inheritance by the direct parent

(e.g. /bin for /bin/su), but by all parents of the path. As an example, suppose the ACL

subject was /usr/X11R6/bin/XFree86. That subject would inherit acls from /usr/

X11R6/bin, /usr/X11R6, /usr, and /.

The reason behind implementing inheritance is to reduce the amount of configuration,

necessary for similar binaries. If you wish to explicitly state the files a certain binary can

access, you should use the “o” flag in the subject mode. This tells grsecurity not to

perform inheritance for that subject.

Inheritance in regards to the kernel’s handling of ACLs is a bit different. In this case, it

involves copying the ACL of the subject when the object with “i” in its mode is executed. It

allows you to grant special permissions to a process only when it is executed through a

process of your choosing. An example of this kind of inheritance is:

/ {

 / rwx

 /tmp rw
}

/usr/bin/mozilla {

 /usr/bin/mozilla-bin rxi

 /tmp rwx
}

For this example, assume /usr/bin/mozilla is a script that executes /usr/bin/

mozilla-bin. When /usr/bin/mozilla-bin is executed by /usr/bin/mozilla, it

inherits the ACL of /usr/bin/mozilla, which allows it to execute in /tmp. If /usr/

bin/mozilla-bin were executed directly by a user, it would not be able to execute in /

tmp as it would use the ACL for /.

As a final note, the “i” mode for objects will only have the desired effect if the application

performs a fork() and then an execve(), or just an execve(). If the application

executes the program through system(), you will not get the result you want, because

the shell is being executed directly by the application, which in turn executes the program

you wanted to have inheritance.

C. Flow of Matches

To understand how to write correct ACL configurations, you need to understand how the

ACL system generates a “match” for a given file, a mapping of how the current process is

allowed to interact with that given file. The following is a flow chart that outlines the

steps grsecurity takes to determine an ACL match.

Light blue boxes are user actions; light green boxes are kernel actions. Green arrows

indicate a successful operation; red arrows indicate a failed operation. As you can see, to

create a “match” for a specific file, grsecurity follows the parent directories of the path

until it finds an object ACL for that path. It then treats that path as the rule for the path it

was looking for in the first place. This approach is quite different from the DAC model

Linux uses. Permission to access a file does not depend on certain access to each parent

directory of that file.

D. Resource Restrictions

One of the newer features of grsecurity’s ACL system is process–based resource

restrictions. Using this feature allows you to restrict things like how much memory a

process can take up, how much CPU time, how many files it can open, and how many

processes it can execute. Also in this section, we will discuss a “fake” resource

implemented in grsecurity’s ACL system called “RES_CRASH” that helps guard against

bruteforce exploit attempts, which is necessary if you’re using PaX.

A single resource rule follows the following syntax:

 <resource name> <soft limit> <hard limit>

An example of this syntax would be: RES_NOFILE 3 3

This would allow the process to open a maximum of 3 files (all processes have 3 open file

descriptors at some point: stdin, stdout, and stderr)

To clarify what the soft limit and hard limit are, the soft limit is the limit assigned to the

process when it is run. The hard limit is the maximum point to which a process can raise

the limit via setrlimit(2), unless they have CAP_SYS_RESOURCE. In the case of

RES_CPU, when the soft limit is overstepped, a special signal is sent to the process

continuously. When the hard limit is overstepped, the process is killed.

The following is a list of accepted resource names (grsecurity supports all the resources

Linux supports) and their descriptions:

• RES_CPU - CPU time in milliseconds

• RES_FSIZE - Maximum file size in bytes

• RES_DATA - Maximum data size in bytes

• RES_STACK - Maximum stack size in bytes

• RES_CORE - Maximum core size in bytes

• RES_RSS - Maximum resident set size

• RES_NPROC - Maximum number of processes

• RES_NOFILE - Maximum number of open files

• RES_MEMLOCK - Maximum locked–in–memory in bytes

• RES_AS - Address space limit in bytes

• RES_LOCKS - Maximum file locks

I suggest that a person who is less familiar with Linux stick to setting limits on the number

of files, the address space limit, and number of processes. Of course, you can always use

the learning mode of grsecurity to set the resource limits for you. The learning mode will

be explained in section IV.

The RES_CPU resource is the only one that accepts time as limits. The time defaults to

units of milliseconds. You can also append a case sensitive unit to your limit.

Some examples would be:

100s - 100 seconds

25m - 25 minutes

65h - 65 hours

2d - 2 days

The other resources either operate on a number itself or on a size, in bytes. For these you

can use the following units: K, M, and G, like:

2G - 2 billion

25M - 25 million

100K - 100 thousand

If you don't want any restriction for the soft or hard limit for a resource, you can use

"unlimited" as the limit.

Here are some more examples to help you understand how this works:

RES_CPU 25m 30m

RLIMIT_AS 5M 5M

RLIMIT_NPROC 2 2

RLIMIT_FSIZE 5K 10K

Now on to the “fake” resource limit, implemented in grsecurity. It is expressed by using

the name “RES_CRASH” and has the following syntax:

 RES_CRASH <number of crashes> <amt. of time>

So for example, if you wanted to allow the program to crash once every 30 minutes, you

would use the following:

 RES_CRASH 1 30m

What happens when this threshold is reached? Well, the only way to ensure that the

process won’t crash again is to keep it from being executed. If the process is a s[u|g]id

binary run by a regular user, we kill all processes of that regular user and keep them from

logging in for the amount of time, specified as the second parameter to the RES_CRASH

resource. So for the above example, the user would be locked out of the system for 30

minutes. If the process is not a s[u|g]id binary, we simply keep the binary from being

run again for the amount of time specified as the second parameter to the RES_CRASH

resource, after killing all processes of that binary.

E. IP ACLs

Another new feature of grsecurity’s ACL system is IP ACLs. IP ACLs allow you to control

such things as what IPs and ports a process can bind to on a server, as well as what IPs and

ports they can connect to remotely. You can also specify what kind of sockets a process is

allowed to use (e.g. stream, dgram, raw), as well as, what protocols they’re allowed

to use (e.g. tcp, udp, icmp).

The syntax for IP ACLs is:

connect {

 <ip>/<netmask>:<low port>–<high port> <type> <proto>
}

bind {

 <ip>/<netmask>:<low port>–<high port> <type> proto>
}

If netmask is omitted, it is assumed to be 32. If high port is omitted, the low port will be

set as the low and high values of the range. If both low and high ports are omitted, 0 is

used as the low port and 65535 is used as the high port. “type” can be one of “sock”,

“dgram”, “raw_sock”, or “any_sock”. “proto” can be any of the protocol

names listed in /etc/protocols, as well as “raw_proto” and “any_proto”. You can

have multiple IP ACLs per connect or bind definition. If you want to disable connect or

bind for a specific process, instead of using an IP ACL, just use “disabled”. If you don’t

specify connect or bind within your process ACL, all socket usage that is normally allowed

will be allowed. If connect or bind ACLs are specified, then only accesses matching your

rules will be allowed. The following are some examples of valid IP ACLs:

connect {

disabled

}

bind {

192.168.1.2/24:80 stream tcp

}

connect {

192.168.1.2/24 stream dgram tcp udp

134.55.22.12/24:80 stream tcp

}

bind {

192.168.1.2/24:1024–65535 any_type any_proto

}

Based on your ACLs for connect and bind, an ACL is automatically generated for socket

(2) calls. If you had two rules that allowed some sort of stream tcp access, and another

rule that allowed dgram udp access, any attempt to open a socket with raw set as the

socket type, for instance, would fail.

F. PaX flags and caveats

Another new feature of the ACL system is the support of the binary flags for PaX. More

information on PaX is available at http://pageexec.virtualave.net/ and in the help for

grsecurity’s kernel configuration.

Repeating from earlier in this document, the following are the PaX flags in the ACL

system:

• P DISABLES the PAGEEXEC feature of PaX on this subject

• S DISABLES the SEGMEXEC feature of PaX on this subject

• M DISABLES the MPROTECT feature of PaX on this subject

• R DISABLES the RANDMMAP feature of PaX on this subject

• G ENABLES the EMUTRAMP feature of PaX on this subject

• X ENABLES the RANDEXEC feature of PaX on this subject

It bears noting that the flags act in the opposite direction as the default binary flags. By

default, PAGEEXEC, SEGMEXEC, MPROTECT, and RANDMMAP are all enabled on ELF binaries

on the system. This also means that the PaX flags in the ACL system will never override

the PaX flags set on a binary that are changed from the default flags. So if you for

instance enable RANDEXEC on sshd with chpax, and you forget to put “X” in the subject

mode for sshd, RANDEXEC will still be enabled on sshd.

Why would you want to use the PaX flags in the ACL system? Let’s say you have a

developer whose name is Joe. Joe does lots of coding on your server, and he gets a thrill

out of debugging his applications. Joe is tired of having to chpax his application every

time he recompiles it so that he can debug it. Grsecurity’s ACL system comes to the

rescue. An ACL like the following:

/home/joe PSMR {

}

will solve Joe’s problem.

The caveat to using the PaX flags in the ACL system is that while the ACL system can be

applied at any time while the system is on, and can apply ACLs to already running

processes, it cannot apply the PaX flags to already running processes. This is simply

because of the way PaX works, and cannot be changed. Be aware of this when you’re

using the PaX flags in the ACL system.

G. Object globbing

Yet another new feature of the ACL system is the support of the wildcards * and ? in ACL

objects. The “*” character matches zero or more characters, while “?” matches exactly

one character. Depending on how these globbing characters are used, they have different

effects. Here are two examples of the use of globbing:

/dev/tty* rw

/home/*/bin rwx

In the first example, you’ll notice that a globbing character was used in the last path

component. On a typical system, this would expand to /dev/tty, /dev/tty1, /dev/tty2, /dev/

tty3, etc. Because the globbing character was used in the last path component, /dev/tty*

expands to only the files that match the expression at the time the ACL system is enabled.

In the second example, you’ll notice that there is no globbing character in the last path

component. This is handled differently than the previous case, because we can do a trick

here that will make it more useful. Let’s say you have many users on your system, and you

allow them to have a bin dir within their home directory, where you will allow write and

execute access to. Some of the users on your system have this bin directory already set

up, but others do not. You don’t want to have to reconfigure your ACLs every time a user

sets up his bin directory, so you use the /home/*/bin ACL.

The way these work is as follows: The last path component is stripped off, which in this

case would leave /home/*. All matches are found for that expression, and then the last

path component is appended to each of the directories that result (eg. /home/user1/

bin, /home/user2/bin, etc), and then each of those objects are added to the

compiled ACL list, whether or not they exist yet. So what happens is when the user

creates their bin directory, it automatically gets the rwx ACL for the bin directory.

What if you want to place a special ACL on /dev/null, for example, and cover the rest of

the files in /dev with a globbed ACL? You must specify the /dev/null rule first, otherwise

gradm will report the /dev/null as a duplicate.

H. Miscellaneous notes

The mmap and ptrace restrictions in grsecurity I believe need some additional clarification.

You may have noticed from time to time while you were trying to set up your ACLs some

logs from grsecurity about “attempting to load writable libraries.” The reason you are

receiving this log is because a process on your system tried to load a library from a

location that is allowed to be written to with the default ACL (the subject ACL for /). One

of the reasons why this check is in place is because it is possible to leak privileges from

privileged processes by using LD_PRELOAD, LD_LIBRARY_PATH, and others. To

correct the “attempting to load writable library” error, you need to remove write

permission from the location in your default ACL that is matching the library being

loaded. This check is avoided if the binary doing the mmap is writable itself by the default

ACL, since if the binary itself can’t be trusted, there’s no sense in enforcing that the

libraries it loads be trusted.

Ptraces are disallowed across subjects, and subjects other than the default ACL do not

allow ptracing of other processes within the same subject.

Both of these additional restrictions can be ignored for a given subject by adding the “O”

override flag to its subject mode. The override flag should rarely be used, if ever.

The handling of symlinks needs an additional clarification as well. For correct handling of

symlinks in the ACL configuration, whenever an ACL for a symlink is encountered, two

ACLs are actually added. An ACL for the symlink itself is added, and the real path of its

target gets the same ACL added. What if you want to put one ACL on the symlink, and a

different ACL on its target? You must specify the ACL for the target first, otherwise

gradm will report a duplicate.

The automatic local attack response works for all alerts in grsecurity that would be signs

of an attack, not just those of the ACL system.

I. ACL Recommendations

Now that you know how the ACL system works, here are some tips to help you create

secure ACL configurations.

• Try to remove as many capabilities from the default ACL as possible. The

more you remove, the closer root comes to acting as a regular user. The more

capabilities you remove, however, the more ACLs you will have to create for

programs that need those capabilities.

• Use the ACLs in the debian_secure_acls directory of gradm if

possible.

• Use the learning mode. It can create ACLs better than you can.

• Administrative programs, such as shutdown or reboot, should require

authentication instead of giving everyone the capabilities to run them. You can

do this by making an ACL for /sbin/shutdown, and making it hidden to all

processes by putting /sbin/shutdown h as an object in your process ACL for

/. Then, the only way you can access the special privileges of /sbin/shutdown

is by entering administration mode with gradm -a.

• Familiarize yourself with Linux’s capabilities and what they cover. A listing

and description of each of the capabilities is present at the end of this document,

and also in include/linux/capability.h of your Linux source tree.

J. Sample ACLs

To give you an idea of what actual ACL configurations look like, here are a few sample

ACLs:

/usr/sbin/apache oXA {

 /usr/share r

 /etc r

 /etc/grsec h

 /etc/ld.so.cache r

 /tmp rwx

 /lib rx

 /usr/lib rx

 /var/log/apache a

 /var/run/apache.pid w

 /var/www rx

 /dev/null rw

 /bin/bash x

 /usr/sbin/apache x

 /

 -CAP_ALL

 +CAP_DAC_OVERRIDE

 +CAP_KILL

 +CAP_SETGID

 +CAP_SETUID

 +CAP_NET_BIND_SERVICE

 RES_CRASH 1 10m

 connect {

 0.0.0.0/0:53 dgram udp

 }

 bind {

 0.0.0.0/0:80 stream tcp

 }

}

/usr/X11R6/bin/XFree86 SP {

 /var/log/XFree86.0.log rw

 /var/log/XFree86.1.log rw

 /dev/mem rw

 /dev/nvidiactl rw

 /dev/nvidia0 rw

 +CAP_CHOWN

 +CAP_SETUID

 +CAP_SETGID

 +CAP_DAC_OVERRIDE

 +CAP_SYS_RAWIO

 +CAP_SYS_MODULE

 +CAP_SYS_NICE

 +CAP_SYS_TTY_CONFIG

 +CAP_IPC_OWNER

}

/usr/lib/postfix o {

 /var/spool/postfix rw

 /var/spool/postfix/lib rx

 /var/mail w

 /dev/log rw

 /dev/null rw

 /dev/urandom r

 /etc/aliases

 /etc/postfix rw

 /etc r

 /etc/grsec h

 /lib rx

 /usr/lib rx

 /usr/share/zoneinfo r

 /var/tmp

 / h

 -CAP_ALL

 +CAP_DAC_OVERRIDE

 +CAP_KILL

 +CAP_SETGID

 +CAP_SETUID

 +CAP_SYS_CHROOT

 connect {

 0.0.0.0/0:53 stream dgram ip tcp udp

 0.0.0.0/0:25 stream ip tcp

 }

 bind {

 disabled

 }

}

/bin/login oX {

 /var/mail

 /var/log/btmp

 /proc

 /home

 /root

 /var/run/utmp rw

 /var/log/wtmp w

 /var/log/lastlog rw

 /var/log/faillog rw

 /usr/share/zoneinfo r

 /lib rx

 /etc r

 /etc/grsec h

 /dev/tty1 w

 /dev/tty2 w

 /dev/tty3 w

 /dev/tty4 w

 /dev/tty5 w

 /dev/log rw

 /bin/bash x

 /bin/login x

 / h

 -CAP_ALL

 +CAP_CHOWN

 +CAP_FOWNER

 +CAP_FSETID

 +CAP_SETGID

 +CAP_SETUID

 RES_CRASH 1 10m

 connect {

 disabled

 }

 bind {

 disabled

 }

}

IV. Using Gradm and the Learning Mode

Gradm is a powerful tool that parses your ACLs, performs the enforcement of a secure

base policy, optimizes the ACLs, as well as handles parsing of the learning logs, merges

them with your ACL set and outputs the final ACLs.

First, a quick rundown of all the options of gradm:

–E Enable the ACL system

–R Reload the ACL system (only valid while in admin

mode)

–M <filename|uid> Remove an execution ban on a given uid or filename,

that has been put in place by the RES_CRASH

resource restriction of the ACL system.

–L [logfile] Parses the learning logs. Accepts an optional

argument, which specifies the kernel logfile to scan

for the learning logs. Learning logs are logged

through syslog with a level of INFO. If the argument is

not specified, gradm will scan your /etc/syslog.

conf file to find a suitable log to scan. This option

has to be used with -O.

–O <filename|stream> Specifies output mode for learned ACLs. Requires a

single argument that can be «stdout», «stderr»,

or a regular file. Only used with -L.

 –D Disable the ACL system.

 –T <subject> <object> Displays the permissions for object, allowed by

subject.

 –P Setup the password for the ACL system.

 –a Obtain full administrative capabilities (aka admin

mode).

 –h Display help information.

 –v Print version information.

To recap where you’re allowed to execute certain options of gradm, here’s a table:

Enabled Disabled Admin

Enable Ignored Allowed Ignored

Disable Allowed Ignored Allowed

Reload Denied Ignored Allowed

Segvmod Allowed Ignored Allowed

Test Denied Allowed Allowed

Learn Denied Allowed Allowed

Admin Allowed Ignored Allowed

Passwd Denied Allowed Denied

Now on to the learning mode of grsecurity. The learning mode is different than anything

found in other security systems. Our learning mode is process–based. You can use the

learning mode on a single process, while the rest of the system remains protected as

usual. The learning mode can learn all things that the ACL system supports: files,

capabilities, resources, and socket usage.

Using the learning mode is very simple. All you have to do is add “l” to the subject mode

of the process, you want to enable learning for. Enable the ACL system with gradm –E.

Run the application(s) you enabled learning mode for several times. This is important,

since the learning mode uses a threshold–based system to determine when access should

be given to a file or whether it should be given to a directory. If 4 or more similar

accesses are made in a single directory (such as writing to several files in /tmp), access is

granted to that directory instead of the individual files. This reduces the amount of rules

you have and ensures that the application will work correctly after the final ACLs are

compiled.

Once you feel you’ve given the application the normal usage it would see in real life,

disable the ACL system with gradm -D (or alternatively, go into admin mode with

gradm -a), and use gradm -L -O /etc/grsec/acl. This will place the new learned

ACLs at the end of your ruleset. Simply remove the old ACLs and you’re ready to go.

What the learning mode does is log every access attempt that would have been denied by

your ACL for that process, while allowing the access to occur. Therefore, it should be clear

to you that to create a least privilege ACL you would use the following ACL:

/path/to/executable lo {

 / h

 –CAP_ALL

 RES_FSIZE 0 0

 RES_DATA 0 0

 RES_RSS 0 0

 RES_NOFILE 0 0

 RES_MEMLOCK 0 0

 RES_STACK 0 0

 RES_AS 0 0

 RES_NPROC 0 0

 RES_LOCKS 0 0

 connect {

 disabled

 }

 bind {

 disabled

 }
}

V. FAQ

A. Where Do I Look for Additional Information?

• If you need help with gradm, use gradm -h or man gradm.

• If you need help creating ACLs, use the forums at http://forums.

grsecurity.net/ or the mailing list, which you can view more information on at

 http://www.grsecurity.net/mailinglist.php.

B. I’ve Found a Bug! What Do I Do?

If you believe, you’ve found a bug in the ACL system, send an email to dev@grsecurity.

net with the following information:

• Version of Linux kernel you’re using

• Version of grsecurity you’re using (old versions will not be supported)

• If you see an error message in your log, please include relevant sections

of the log

• Describe what you did to cause the bug

• If the bug caused a kernel oops, please include the oops as well as the

output from ksymoops, if possible.

If you submit a patch or a solution to a bug, you will be credited in the changelog.

C. Program “X” Isn’t Working Since I Enabled the ACL system, What Gives?

If a program stops working properly after you enable the ACL system, it is most likely

due to improper or incomplete ACLs. Go back and read the section on ACL suggestions

and see if that helps. If the program still does not work, ask for help on the mailing list

or the forums, and we’ll help you fix it.

D. How Can I Help?

The greatest way, you can help us, is by submitting thorough bug reports or patches,

and feature enhancements. If you are not a programmer, but still wish to help in some

way, send an email to dev@grsecurity.net and tell us how you would like to help.

VI. Appendix

A. Capability Names and Descriptions

0. CAP_CHOWN – In a system with the [_POSIX_CHOWN_RESTRICTED] option

defined, this overrides the restriction of changing file ownership and group

ownership.

1. CAP_DAC_OVERRIDE – Override all DAC access, including ACL execute access if

[_POSIX_ACL] is defined. Excluding DAC access covered by

CAP_LINUX_IMMUTABLE.

2. CAP_DAC_READ_SEARCH – Overrides all DAC restrictions, regarding read and

search on files and directories, including ACL restrictions, if [_POSIX_ACL] is

defined. Excluding DAC access covered by CAP_LINUX_IMMUTABLE.

3. CAP_FOWNER – Overrides all restrictions about allowed operations on files,

where file owner ID must be equal to the user ID, except where CAP_FSETID is

applicable. It doesn't override MAC and DAC restrictions.

4. CAP_FSETID – Overrides the following restrictions, that the effective user ID

shall match the file owner ID, when setting the S_ISUID and S_ISGID bits on that

file; that the effective group ID (or one of the supplementary group IDs) shall match

the file owner ID when setting the S_ISGID bit on that file; that the S_ISUID and

S_ISGID bits are cleared on successful return from chown(2) (not implemented).

5. CAP_KILL – Overrides the restriction, that the real or effective user ID of a

process, sending a signal, must match the real or effective user ID of the process,

receiving the signal.

6. CAP_SETGID –

• Allows setgid(2) manipulation;

• Allows setgroups(2);

• Allows forged gids on socket credentials passing.

7. CAP_SETUID –

• Allows set*uid(2) manipulation (including fsuid);

• Allows forged pids on socket credentials passing.

8. CAP_SETPCAP – Transfer any capability in your permitted set to any pid,

remove any capability in your permitted set from any pid.

9. CAP_LINUX_IMMUTABLE – Allow modification of S_IMMUTABLE and

S_APPEND file attributes.

10. CAP_NET_BIND_SERVICE –

• Allows binding to TCP/UDP sockets below 1024;

• Allows binding to ATM VCIs below 32.

11. CAP_NET_BROADCAST – Allow broadcasting, listen to multicast.

12. CAP_NET_ADMIN –

• Allow interface configuration;

• Allow administration of IP firewall, masquerading and accounting;

• Allow setting debug option on sockets;

• Allow modification of routing tables;

• Allow setting arbitrary process / process group ownership on sockets;

• Allow binding to any address for transparent proxying;

• Allow setting TOS (type of service);

• Allow setting promiscuous mode;

• Allow clearing driver statistics;

• Allow multicasting;

• Allow read/write of device–specific registers;

• Allow activation of ATM control sockets.

13. CAP_NET_RAW –

• Allow use of RAW sockets;

• Allow use of PACKET sockets.

14. CAP_IPC_LOCK –

• Allow locking of shared memory segments;

• Allow mlock and mlockall (which doesn't really have anything to do

with IPC).

15. CAP_IPC_OWNER – Override IPC ownership checks.

16. CAP_SYS_MODULE –

• Insert and remove kernel modules – modify kernel without limit;

• Modify cap_bset.

17. CAP_SYS_RAWIO –

• Allow ioperm/iopl access;

• Allow sending USB messages to any device via /proc/bus/usb.

18. CAP_SYS_CHROOT – Allow use of chroot().

19. CAP_SYS_PTRACE – Allow ptrace() of any process.

20. CAP_SYS_PACCT – Allow configuration of process accounting.

21. CAP_SYS_ADMIN –

• Allow configuration of the secure attention key;

• Allow administration of the random device;

• Allow examination and configuration of disk quotas;

• Allow configuring the kernel's syslog (printk behaviour);

• Allow setting the domainname;

• Allow setting the hostname;

• Allow calling bdflush();

• Allow mount() and umount(), setting up new smb connection;

• Allow some autofs root ioctls;

• Allow nfsservctl; Allow VM86_REQUEST_IRQ;

• Allow to read/write pci config on alpha; Allow irix_prctl on mips

(setstacksize);

• Allow flushing all cache on m68k (sys_cacheflush);

• Allow removing semaphores; Used instead of CAP_CHOWN to "chown"

IPC message queues, semaphores and shared memory;

• Allow locking/unlocking of shared memory segment;

• Allow turning swap on/off;

• Allow forged pids on socket credentials passing;

• Allow setting readahead and flushing buffers on block devices;

• Allow setting geometry in floppy driver;

• Allow turning DMA on/off in xd driver;

• Allow administration of md devices (mostly the above, but some extra

ioctls);

• Allow tuning the ide driver;

• Allow access to the nvram device;

• Allow administration of apm_bios, serial and bttv (TV) device;

• Allow manufacturer commands in isdn CAPI support driver;

• Allow reading non–standardized portions of pci configuration space;

• Allow DDI debug ioctl on sbpcd driver;

• Allow setting up serial ports;

• Allow sending raw qic–117 commands;

• Allow enabling/disabling tagged queuing on SCSI controllers and

sending arbitrary SCSI commands;

• Allow setting encryption key on loopback filesystem.

22. CAP_SYS_BOOT – Allow use of reboot().

23. CAP_SYS_NICE –

• Allow raising priority and setting priority on other (different UID)

processes;

• Allow use of FIFO and round–robin (realtime) scheduling on own

processes and setting the scheduling algorithm used by another

process.

24. CAP_SYS_RESOURCE –

• Override resource limits. Set resource limits;

• Override quota limits;

• Override reserved space on ext2 filesystem;

• Modify data journaling mode on ext3 filesystem (uses journaling

resources); NOTE: ext2 honors fsuid when checking for resource

overrides, so you can override using fsuid too;

• Override size restrictions on IPC message queues;

• Allow more than 64hz interrupts from the real–time clock;

• Override max number of consoles on console allocation;

• Override max number of keymaps.

25. CAP_SYS_TIME –

• Allow manipulation of system clock;

• Allow irix_stime on mips;

• Allow setting the real–time clock.

26. CAP_SYS_TTY_CONFIG – Allow configuration of tty devices; Allow vhangup

() of tty.

27. CAP_MKNOD – Allow the privileged aspects of mknod().

28. CAP_LEASE – Allow taking of leases on files.

