
Open Source Security, Inc.Compilers: The Old New Security Frontier

Compilers:
The Old New Security Frontier

Brad Spengler
Open Source Security, Inc.
BlueHat IL
March 2022



Open Source Security, Inc.Compilers: The Old New Security Frontier

whoami

• For ~14 years, by day, Windows malware analyst/reverse engineer/ 

deobfuscator/sandbox developer/kernel developer

• For ~18 years, by night, Linux kernel security, grsecurity developer

• For ~3 years, full-time @ Open Source Security Inc.

• “Managing” an insanely talented team

• More realistically: providing the environment and resources needed to fully explore 

and tackle the most difficult computer security problems for customers with high 

security needs



Open Source Security, Inc.Compilers: The Old New Security Frontier

Compilers + Security: Why Should I Care?

• Thesis: the next generation of security defenses necessarily involves compilers

• We’ve gotten as far as we can with NX/ASLR/etc

• Compiler plugins in particular provide unique defense benefits

• With advent of Spectre, manual approaches don’t scale

• Helps ensure security properties despite third-party changes

• Precise control allows for higher performance through optimizations than afforded by blanket naïve 

approaches

https://www.vusec.net/projects/kasper/

https://www.vusec.net/projects/kasper/


Open Source Security, Inc.Compilers: The Old New Security Frontier

Compilers + Security: Why Should I Care?

• State of the art in offense from 2000 to 2005 is now commonplace

• Better/more accessible explanations of the exploitation techniques (ROP etc)

• Improved automation (ROP gadget finders)

• Mainstream defense has struggled to reach even 2003 state of the art

• PAGEEXEC/MPROTECT in 2000

• ASLR in 2001

• KERNEXEC in 2003 (!)

• Before XP SP2 even, the first big entry in the Trustworthy Computing initiative

https://pax.grsecurity.net/docs/pageexec.txt
https://pax.grsecurity.net/docs/mprotect.txt
https://pax.grsecurity.net/docs/aslr.txt


Open Source Security, Inc.Compilers: The Old New Security Frontier

Compilers + Security: Why Should I Care?

• Major benefits to being ahead of the exploitation curve

• Cannot rest on laurels and let defense stagnate

• If exploit vectors/techniques get ahead, hammered with the same techniques for years

• My commit_creds() technique is still used 13 years later, enshrined in books and 

university courses

• Previously “hardened” OSes lose that designation

• Compiler-based defense is the only way to stay ahead and provide the same security 

guarantees across all users

• SMEP vs KERNEXEC plugin / CET vs RAP plugin



Open Source Security, Inc.Compilers: The Old New Security Frontier

Compilers + Security: Outline

• Incomplete Linux/GCC/C/C++-centric history

• Early advances

• Long lull

• Plugins and new advances

• Advantages of compiler (plugin) defense

• Roadblocks/problems



Open Source Security, Inc.Compilers: The Old New Security Frontier

Compilers + Security: Not New

Static 
Analysis
(Forever)

StackGuard
(1997)

StackShield
(1999)

ProPolice/SSP
(2000)

PointGuard
(2003)

FORTIFY_SOURCE
(2004)



Open Source Security, Inc.Compilers: The Old New Security Frontier

Compilers + Security: Not New

• Most early work (1997-2005) created as EGCS/GCC enhancements for the commercial Immunix

distribution

• Sold to Novell in 2005 for an undisclosed amount

• Market for commercial hardened Linux distribution “never panned out” (eWeek)

• Prior to that, and parallel to Immunix’s existence were other projects tackling similar problems 

without compilers

• Openwall – 1997

• PaX – 2000

• grsecurity - 2001

• After Immunix was gone, not much happening in the production compiler+security space for years

• At least until 2010-2012

https://web.archive.org/web/20040117100851/http:/immunix.com/technology/
https://www.openwall.com/linux/
https://pax.grsecurity.net/
https://grsecurity.net/


Open Source Security, Inc.Compilers: The Old New Security Frontier

Compilers + Security: Newish

• GCC 4.5.0 released in April 2010

• First version with plugin support, driven by LLVM competition

• Eliminates a barrier to entry for compiler enhancements

• See PaX Team’s 2013 H2HC presentation on GCC plugins:

• https://pax.grsecurity.net/docs/PaXTeam-H2HC13-PaX-gcc-plugins.pdf

• Covered CONSTIFY (2011), KERNEXEC (2011), STACKLEAK (2011), LATENT_ENTROPY (2012), 

SIZE_OVERFLOW (2012), STRUCTLEAK (2013)

• Since then (security-wise):

• RANDSTRUCT

• RAP

• RESPECTRE

• AUTOSLAB

https://pax.grsecurity.net/docs/PaXTeam-H2HC13-PaX-gcc-plugins.pdf
https://pax.grsecurity.net/docs/PaXTeam-H2HC13-PaX-gcc-plugins.pdf#page=19
https://pax.grsecurity.net/docs/PaXTeam-H2HC13-PaX-gcc-plugins.pdf#page=48
https://pax.grsecurity.net/docs/PaXTeam-H2HC13-PaX-gcc-plugins.pdf#page=36
https://pax.grsecurity.net/docs/PaXTeam-H2HC13-PaX-gcc-plugins.pdf#page=25
https://pax.grsecurity.net/docs/PaXTeam-H2HC13-PaX-gcc-plugins.pdf#page=43
https://pax.grsecurity.net/docs/PaXTeam-H2HC13-PaX-gcc-plugins.pdf#page=39
https://grsecurity.net/SSTIC2016.pdf#page=3
https://grsecurity.net/rap_announce2
https://grsecurity.net/respectre_announce
https://grsecurity.net/how_autoslab_changes_the_memory_unsafety_game


Open Source Security, Inc.Compilers: The Old New Security Frontier

Respectre Example

Visual Studio 2022 /Qspectre Respectre
Optimal Ad-Hoc Fix

(source above)

See also: https://grsecurity.net/teardown_of_a_failed_linux_lts_spectre_fix

https://grsecurity.net/teardown_of_a_failed_linux_lts_spectre_fix


Open Source Security, Inc.Compilers: The Old New Security Frontier

Compilers + Security: Newish

• Plugins proved useful for more than just novel security features

• SANCOV

• INITIFY

• Injecting inline assembly at source level in arbitrary locations

• Provided “backports” of newer compiler features to all plugin-capable versions

• Retpolines

• KCOV_COMPARISONS

• Fixed compiler bugs and bad user/dev experience cases

• __optimize__(“no-stack-protector”)

• GCC >= 4.7 (2012) && < 8 (2018) bug resulting in uninitialized padding bytes for local vars 

https://github.com/ephox-gcc-plugins/sancov
https://github.com/ephox-gcc-plugins/initify
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/lib/Kconfig.debug?h=v5.17-rc3#n2001
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94722


Open Source Security, Inc.Compilers: The Old New Security Frontier

Compilers + Security: Newish (Outside)

• Google’s sanitizers: ASan/TSan/MSan/UBSan

• Huge boon for fuzzing

• Clang CFI

• Used in Android, on ARM64 in Linux kernel

• AFL LLVM Plugin

• Upstream Linux getting their feet wet even

• Plugin for ARM per-task SSP canary

• Present since Linux 5.0

• Vs global/shared/unchanged canary on SMP

• Newer version that uses TLS register

https://clang.llvm.org/docs/ControlFlowIntegrity.html
https://github.com/google/AFL/tree/master/llvm_mode


Open Source Security, Inc.Compilers: The Old New Security Frontier

Compilers + Security: The New New

• Probabilistic backward-edge CFI checks (PAX_RAP_XOR) – April 2020

• Defense against Speculative Blind ROP (BlindSide)

• BlindSide paper – Sept 2020

• PAX_RAP_CALL_NOSPEC – Dec 2020

• “Private” kernel stacks – February 2022

• Addresses attack that caused RFG to be shelved, without requiring CET/HW shadow stacks

• All-but-current process stacks not mapped

• IRQ handlers cannot view other CPU IRQ stacks

• __nolocal attribute for on-stack vars intended to be accessed by remote tasks

• __nolocal_arg() attribute for functions to document/convert local vars used by callers

https://pax.grsecurity.net/docs/PaXTeam-H2HC15-RAP-RIP-ROP.pdf#page=15
https://www.vusec.net/projects/blindside/
https://xlab.tencent.com/en/2016/11/02/return-flow-guard/
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2018_02_OffensiveCon/The%20Evolution%20of%20CFI%20Attacks%20and%20Defenses.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/catc17-introduction-intel-cet-844137.pdf


Open Source Security, Inc.Compilers: The Old New Security Frontier

PAX_PRIVATE_KSTACKS Example (without)

Task Workthread Task

crypto_shash_digest(desc, in_data, len, &outbuf);

Process 

Stack

Task Struct Process 

Stack

retaddr2

retaddr1

Task Struct

retaddr1

char 

outbuf[32];

calls Writes to outbuf

Can corrupt retaddr!

But needs to write 
to outbuf!



Open Source Security, Inc.Compilers: The Old New Security Frontier

PAX_PRIVATE_KSTACKS Example (with)

Task Workthread Task

Unmapped 

Process 

Stack

Task Struct Process 

Stack

retaddr2

retaddr1

Task Struct

retaddr1
Can’t corrupt retaddr!

Write to outbuf
happens without 
stack map/unmap

‘Nolocal’ 

page

char 

outbuf[32];

crypto_shash_digest(desc, in_data, len, &outbuf);calls Writes to outbuf



Open Source Security, Inc.Compilers: The Old New Security Frontier

Compilers + Security: The New New (Outside)

• -fanalyzer

• Still a lot of noise, but improving

• https://www.youtube.com/watch?v=b1fO-RLtDME

• Extendable by plugins!

• Shadow Call Stack support

• __builtin_dynamic_object_size()

• Can make use of some non-const allocation sizes vs basic/older __builtin_object_size() that 

severely limited coverage/usefulness

• -mzero-caller-saved-regs

• -ftrivial-auto-var-init

• AFL++ GCC plugin

https://gcc.gnu.org/onlinedocs/gcc-10.1.0/gcc/Static-Analyzer-Options.html
https://www.youtube.com/watch?v=b1fO-RLtDME
https://clang.llvm.org/docs/ShadowCallStack.html
https://gcc.gnu.org/onlinedocs/gcc/Object-Size-Checking.html
https://lists.llvm.org/pipermail/llvm-dev/2020-August/144082.html
https://gcc.gnu.org/pipermail/gcc-patches/2021-February/565514.html
https://github.com/AFLplusplus/AFLplusplus/pull/551/commits/9544b3dbf22f1007f7d3f77593ec746a0345a587


Open Source Security, Inc.Compilers: The Old New Security Frontier

Compiler (Plugin) Defense Advantages

• Backporting is generally trivial

• Plugin code can mostly be copied to older kernel versions verbatim

• Compare to trying to backport hundreds/thousands of manually-created struct_size() 

conversions and wasted developer time

• Maintainable, scalable, adaptable to third-party modifications

• Especially important for fast-moving, highly modified projects like the Linux kernel

• Try manually converting 40k+ calls to k*alloc(), backporting it all, and maintaining it 

forever

https://www.kernel.org/doc/html/latest/driver-api/basics.html#c.struct_size


Open Source Security, Inc.Compilers: The Old New Security Frontier

Compiler (Plugin) Defense Advantages (Cont.)

• Deeper integration with codebase under compilation/instrumentation (emit calls to 

functions you provide, etc)

• Codebase-specific static analysis that would never be shipped with the compiler proper

• Plugins can evolve with the codebase, making the latest codebase automatically use the 

latest security functionality vs an additional developer/admin requirement on toolchain 

versions

• Otherwise complex changes can be implemented with surprisingly few lines of code



Open Source Security, Inc.Compilers: The Old New Security Frontier

Compiler (Plugin) Defense Advantages - Example



Open Source Security, Inc.Compilers: The Old New Security Frontier

Compiler (Plugin) Defense Problems

• “Canonicalization of expressions”

• var – 1 -> var + 0xffffffff

• var & 0xffff -> (unsigned short)var

• Can be indistinguishable from real overflows/truncations and are difficult/impossible 

to fix via the plugin itself

• This happens in the front-end prior to any plugin invocation

• Not everything can be fixed/improved via a plugin

• Minimal documentation

• “Use the source, Luke!”

• -fdump-tree-all/-fdump-ipa-all/-fdump-rtl-all are your friends



Open Source Security, Inc.Compilers: The Old New Security Frontier

Compiler (Plugin) Defense Problems - Example



Open Source Security, Inc.Compilers: The Old New Security Frontier

Compiler (Plugin) Defense Problems (Cont.)

• Limitations of static analysis

• One of the most important things to keep in mind

• Otherwise end up exaggerating effectiveness of feature (e.g. FORTIFY_SOURCE)

Intra-
procedural

IPA
LTO 

(LTCG)

Less information
Weaker analysis

Low(er)-hanging fruit
Easier implementation

More information
Stronger analysis

More complex findings
Harder implementation



Open Source Security, Inc.Compilers: The Old New Security Frontier

Compiler (Plugin) Defense Problems (Cont.)

• Requires lots of testing / defensive programming

• Test with debug/checked versions of the compiler to catch issues that release 

versions won’t expose

• Only operate based on explicitly-matched patterns, use gcc_assert() liberally

• These patterns can and will change from one GCC version to another

• Requires verifying expected instrumentation exists, vs just “the code works”

• Code-gen bugs are no joke

• Supporting all plugin-capable GCC versions



Open Source Security, Inc.Compilers: The Old New Security Frontier

Compiler (Plugin) Defense Problems – “Mixed Binaries”

• The “Mixed Binary” problem, in essence:

• Take C/C++ codebase with security-relevant instrumentation inserted 

by compiler

• Modernize/secure subset of above codebase in a memory-safe 

language like Rust

• Execute both in the same address space

• Create a whole new world of problems for yourself as the “safe” code 

is abused to enable exploitation for the unsafe C/C++

• We are funding GCC Rust to help address this problem

https://rust-gcc.github.io/


Open Source Security, Inc.Compilers: The Old New Security Frontier

Compiler (Plugin) Defense Problems – “Mixed Binaries”

• https://www.cs.ucy.ac.cy/~elathan/papers/tops20.pdf

• “Our assessment concludes that CFI can be completely nullified through Rust or Go code by 

constructing much simpler attacks than state-of-the-art CFI bypasses.“

• MS specifically identified this problem:

• https://msrc-blog.microsoft.com/2020/08/17/control-flow-guard-for-clang-llvm-and-rust/

https://www.cs.ucy.ac.cy/~elathan/papers/tops20.pdf
https://msrc-blog.microsoft.com/2020/08/17/control-flow-guard-for-clang-llvm-and-rust/


Open Source Security, Inc.Compilers: The Old New Security Frontier

Compiler (Plugin) Defense Problems (Cont.)

• Mixed binary problem will become much more important in the future for other reasons

• Certain defenses introduce new ABI

• If you want CFI, you can’t necessarily mix and match

• Now standards and politics get involved

• LLVM vs GCC vs Visual Studio

• Do late arrivals get stuck with inferior early-adopted solutions?

• Integration/evolution benefits of compiler plugins can’t necessarily be realized unless you control 

the compilation of the entire project in question

• Kernel is near ideal, userland not so much (unless it is a specifically-tailored distribution)

• May be possible to work around, but will result in non-optimal instrumentation

• Inline/external assembly needs adapted for protection coherence



Open Source Security, Inc.Compilers: The Old New Security Frontier

Compiler + Security: Takeaways

• Developer resources are already spread thin, shift manual/error-prone conversions/hardening to 

the compiler wherever possible

• Important to understand compiler theory/design, seek out ways to develop related skills

• Necessary to stay ahead in the future of memory corruption

• Help ensure good ideas with solid security properties in upstream compilers

• Compiler developers need your help: https://llsoftsec.github.io/llsoftsecbook/

• Getting to the right solution is important in security, but it’s even more important to get to that 

solution at a time where it matters, rather than long after the fact

• Security performance budgets aren’t increasing, compiler-based defense helps cram more in

• If you’re interested in Rust and compilers, opportunities exist to carve out your place in the 

relatively new GCC Rust project

https://llsoftsec.github.io/llsoftsecbook/


Open Source Security, Inc.Compilers: The Old New Security Frontier

Grsecurity is created by

Thank you!


